A161566
E.g.f. satisfies: A(x) = exp(2*x*exp(x*A(x))).
Original entry on oeis.org
1, 2, 8, 62, 696, 10362, 193036, 4323846, 113288720, 3401106290, 115150465044, 4341507224958, 180422159478424, 8194551731190762, 403871802897954332, 21468380724070186358, 1224364515329753354784, 74574475891799118725346
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 8*x^2/2! + 62*x^3/3! + 696*x^4/4! +...
log(A(x)) = 2*x*C(x) where C(x) = exp(x*A(x)) = e.g.f. of A161565:
C(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 417*x^4/4! + 6201*x^5/5! +...
A(x)^(1/2) = e.g.f. of A161567:
A(x)^(1/2) = 1 + x + 3*x^2/2! + 22*x^3/3! + 233*x^4/4! + 3356*x^5/5! +...
-
Flatten[{1,Table[Sum[2^k * Binomial[n,k] * (n-k+1)^(k-1) * k^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 28 2014 *)
-
{a(n)=sum(k=0,n,2^k*binomial(n,k)*(n-k+1)^(k-1)*k^(n-k))}
-
{A(n)=local(A=1+x);for(i=0,n,A=exp(2*x*exp(x*A+O(x^n))));n!*polcoeff(A,n,x)}
A161552
E.g.f. satisfies: A(x,y) = exp(x*y*exp(x*A(x,y))).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 12, 1, 0, 4, 72, 48, 1, 0, 5, 320, 810, 160, 1, 0, 6, 1200, 8640, 6480, 480, 1, 0, 7, 4032, 70875, 143360, 42525, 1344, 1, 0, 8, 12544, 489888, 2240000, 1792000, 244944, 3584, 1, 0, 9, 36864, 3000564, 27869184, 49218750, 18579456, 1285956, 9216, 1
Offset: 0
Triangle begins:
1;
0,1;
0,2,1;
0,3,12,1;
0,4,72,48,1;
0,5,320,810,160,1;
0,6,1200,8640,6480,480,1;
0,7,4032,70875,143360,42525,1344,1;
0,8,12544,489888,2240000,1792000,244944,3584,1;
0,9,36864,3000564,27869184,49218750,18579456,1285956,9216,1; ...
-
Join[{1}, Table[Binomial[n, k]*(n - k + 1)^(k - 1)*k^(n - k), {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 18 2017 *)
-
{T(n,k)=binomial(n,k)*(n-k+1)^(k-1)*k^(n-k)}
-
{T(n,k)=local(A=1+x); for(i=0,n, A=exp(x*y*exp(x*A+O(x^n)))); n!*polcoeff(polcoeff(A,n,x),k,y)}
A161568
E.g.f. satisfies: A(x) = exp(2*x*exp(3*x*A(x))).
Original entry on oeis.org
1, 2, 16, 206, 3976, 101402, 3237220, 124293206, 5582747824, 287346080690, 16680250440124, 1078327289938670, 76840445565238024, 5984507179839282122, 505778795448930860308, 46104043794638089809158
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 206*x^3/3! + 3976*x^4/4! +...
-
Flatten[{1,Table[Sum[Binomial[n,k] * 2^k * 3^(n-k) * (n-k+1)^(k-1) * k^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 15 2014 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*2^k*3^(n-k)*(n-k+1)^(k-1)*k^(n-k))}
-
{a(n)=local(A=1+x);for(i=0,n,A=exp(2*x*exp(3*x*A+O(x^n))));n!*polcoeff(A,n,x)}
A161605
E.g.f. satisfies: A(x) = exp(x*exp(x*A(x)^3)).
Original entry on oeis.org
1, 1, 3, 28, 365, 6496, 147127, 4033408, 130058777, 4822981120, 202225551371, 9460961327104, 488602134968389, 27609977350868992, 1694576741234926655, 112258296102497099776, 7983577042683934226993, 606688287932557859356672
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 28*x^3/3! + 365*x^4/4! +...
-
Flatten[{1, Table[Sum[Binomial[n, k]*(3*(n - k) + 1)^(k - 1)*k^(n - k), {k, 0, n}], {n, 1, 50}]}] (* G. C. Greubel, Nov 18 2017 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*(3*(n-k)+1)^(k-1)*k^(n-k))}
-
{a(n)=local(A=1+x);for(i=0,n,A=exp(x*exp(x*A^3+O(x^n))));n!*polcoeff(A,n,x)}
Showing 1-4 of 4 results.
Comments