cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A161566 E.g.f. satisfies: A(x) = exp(2*x*exp(x*A(x))).

Original entry on oeis.org

1, 2, 8, 62, 696, 10362, 193036, 4323846, 113288720, 3401106290, 115150465044, 4341507224958, 180422159478424, 8194551731190762, 403871802897954332, 21468380724070186358, 1224364515329753354784, 74574475891799118725346
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 8*x^2/2! + 62*x^3/3! + 696*x^4/4! +...
log(A(x)) = 2*x*C(x) where C(x) = exp(x*A(x)) = e.g.f. of A161565:
C(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 417*x^4/4! + 6201*x^5/5! +...
A(x)^(1/2) = e.g.f. of A161567:
A(x)^(1/2) = 1 + x + 3*x^2/2! + 22*x^3/3! + 233*x^4/4! + 3356*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[2^k * Binomial[n,k] * (n-k+1)^(k-1) * k^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 28 2014 *)
  • PARI
    {a(n)=sum(k=0,n,2^k*binomial(n,k)*(n-k+1)^(k-1)*k^(n-k))}
    
  • PARI
    {A(n)=local(A=1+x);for(i=0,n,A=exp(2*x*exp(x*A+O(x^n))));n!*polcoeff(A,n,x)}

Formula

a(n) = Sum_{k=0..n} 2^k * C(n,k) * (n-k+1)^(k-1) * k^(n-k).
E.g.f.: A(x) = B(x)^2 where B(x) = e.g.f. of A161567.
a(n) ~ sqrt(LambertW(1/(2*r))) * n^(n-1) / (exp(n) * r^(n+1)), where r = 0.256263163133653382... is the root of the equation 1/LambertW(1/r) = -log(2*r^2) - LambertW(1/r). - Vaclav Kotesovec, Feb 28 2014

A161552 E.g.f. satisfies: A(x,y) = exp(x*y*exp(x*A(x,y))).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 12, 1, 0, 4, 72, 48, 1, 0, 5, 320, 810, 160, 1, 0, 6, 1200, 8640, 6480, 480, 1, 0, 7, 4032, 70875, 143360, 42525, 1344, 1, 0, 8, 12544, 489888, 2240000, 1792000, 244944, 3584, 1, 0, 9, 36864, 3000564, 27869184, 49218750, 18579456, 1285956, 9216, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2009, Jun 14 2009

Keywords

Comments

E.g.f.: A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^n*y^k/n!.
Row sums, (n+1)^(n-1), equal A000272 (number of trees on n labeled nodes).

Examples

			Triangle begins:
1;
0,1;
0,2,1;
0,3,12,1;
0,4,72,48,1;
0,5,320,810,160,1;
0,6,1200,8640,6480,480,1;
0,7,4032,70875,143360,42525,1344,1;
0,8,12544,489888,2240000,1792000,244944,3584,1;
0,9,36864,3000564,27869184,49218750,18579456,1285956,9216,1; ...
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Binomial[n, k]*(n - k + 1)^(k - 1)*k^(n - k), {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 18 2017 *)
  • PARI
    {T(n,k)=binomial(n,k)*(n-k+1)^(k-1)*k^(n-k)}
    
  • PARI
    {T(n,k)=local(A=1+x); for(i=0,n, A=exp(x*y*exp(x*A+O(x^n)))); n!*polcoeff(polcoeff(A,n,x),k,y)}

Formula

T(n,k) = binomial(n,k) * (n-k+1)^(k-1) * k^(n-k).
E.g.f. A(x,y) at y=1: A(x,1) = LambertW(-x)/(-x).
From Paul D. Hanna, Jun 14 2009: (Start)
More generally, if G(x) = exp(p*x*exp(q*x*G(x))),
where G(x)^m = Sum_{n>=0} g(n,m)*x^n/n!,
then g(n,m) = Sum_{k=0..n} C(n,k)*p^k*q^(n-k)*m*(n-k+m)^(k-1)*k^(n-k).
(End)

A161568 E.g.f. satisfies: A(x) = exp(2*x*exp(3*x*A(x))).

Original entry on oeis.org

1, 2, 16, 206, 3976, 101402, 3237220, 124293206, 5582747824, 287346080690, 16680250440124, 1078327289938670, 76840445565238024, 5984507179839282122, 505778795448930860308, 46104043794638089809158
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 206*x^3/3! + 3976*x^4/4! +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n,k] * 2^k * 3^(n-k) * (n-k+1)^(k-1) * k^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 15 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*2^k*3^(n-k)*(n-k+1)^(k-1)*k^(n-k))}
    
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=exp(2*x*exp(3*x*A+O(x^n))));n!*polcoeff(A,n,x)}

Formula

a(n) = Sum_{k=0..n} C(n,k) * 2^k * 3^(n-k) * (n-k+1)^(k-1) * k^(n-k).
More generally, if G(x) = exp(p*x*exp(q*x*G(x))) = Sum_{n>=0} g(n)*x^n/n!,
then g(n) = Sum_{k=0..n} C(n,k) * p^k * q^(n-k) * (n-k+1)^(k-1) * k^(n-k).
a(n) ~ sqrt(s/3) * n^(n-1) / (exp(n) * r^(n+1/2)), where r = 0.149417197143691584817... and s = 2.468671804906329807069... are roots of the system of equations 3*r*s*Log(s) = 1, 6*exp(3*r*s)*s*r^2 = 1. - Vaclav Kotesovec, Jul 15 2014

A161605 E.g.f. satisfies: A(x) = exp(x*exp(x*A(x)^3)).

Original entry on oeis.org

1, 1, 3, 28, 365, 6496, 147127, 4033408, 130058777, 4822981120, 202225551371, 9460961327104, 488602134968389, 27609977350868992, 1694576741234926655, 112258296102497099776, 7983577042683934226993, 606688287932557859356672
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2009

Keywords

Comments

More generally, if G(x) = exp(x*exp(x*G(x)^p)),
where G(x)^m = Sum_{n>=0} g(n,m)*x^n/n!,
then g(n,m) = Sum_{k=0..n} C(n,k) * m*(p*(n-k) + m)^(k-1) * k^(n-k).

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 28*x^3/3! + 365*x^4/4! +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n, k]*(3*(n - k) + 1)^(k - 1)*k^(n - k), {k, 0, n}], {n, 1, 50}]}] (* G. C. Greubel, Nov 18 2017 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(3*(n-k)+1)^(k-1)*k^(n-k))}
    
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=exp(x*exp(x*A^3+O(x^n))));n!*polcoeff(A,n,x)}

Formula

a(n) = Sum_{k=0..n} C(n,k) * (3*(n-k) + 1)^(k-1) * k^(n-k).
Showing 1-4 of 4 results.