cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161696 Number of reduced words of length n in the Weyl group B_3.

Original entry on oeis.org

1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

If the zeros are ignored, this is the coordination sequence for the truncated cuboctahedron (see the Karzes link). - N. J. A. Sloane, Jan 08 2020
Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=10; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..3]])/(1-t)^3)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..3),x,n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)), {k,1,3}] /(1-x)^3, {x,0,9}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^10); Vec(prod(k=1,3,1-t^(2*k))/(1-t)^3) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.