A161697 Number of reduced words of length n in the Weyl group B_4.
1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
- N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)
Crossrefs
Programs
-
Magma
m:=17; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..4]])/(1-t)^4)); // G. C. Greubel, Oct 25 2018 -
Maple
seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..4),x,n+1), x, n), n = 0 .. 100); # Muniru A Asiru, Oct 25 2018
-
Mathematica
CoefficientList[Series[Product[(1-x^(2*k)), {k,1,4}] /(1-x)^4, {x,0,16}], x] (* G. C. Greubel, Oct 25 2018 *)
-
PARI
t='t+O('t^17); Vec(prod(k=1,4,1-t^(2*k))/(1-t)^4) \\ G. C. Greubel, Oct 25 2018
Formula
G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Comments