A161718 Expansion of (1+3*x^2)/(1+x)^2.
1, -2, 6, -10, 14, -18, 22, -26, 30, -34, 38, -42, 46, -50, 54, -58, 62, -66, 70, -74, 78, -82, 86, -90, 94, -98, 102, -106, 110, -114, 118, -122, 126, -130, 134, -138, 142, -146, 150, -154, 158, -162, 166, -170, 174, -178, 182, -186, 190, -194, 198, -202, 206, -210, 214, -218, 222, -226, 230, -234
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (-2,-1).
Programs
-
Mathematica
CoefficientList[Series[(1+3*x^2)/(1+x)^2,{x,0,80}],x] (* or *) LinearRecurrence[ {-2,-1},{1,-2,6},80] (* Harvey P. Dale, Mar 19 2016 *)
-
PARI
x='x+O('x^99); Vec((1+3*x^2)/(1+x)^2) \\ Altug Alkan, Apr 17 2018
Formula
From R. J. Mathar, Aug 27 2009: (Start)
a(n) = -2*a(n-1)-a(n-2), n>3.
G.f.: (1+3*x^2)/(1+x)^2.
a(n) = 4*(-1)^n*n+2*(-1)^(n+1) = (-1)^n*A016825(n-1), n>0. (End)
E.g.f.: 3 - 2*exp(-x)*(1 + 2*x). - Stefano Spezia, Feb 02 2023
Extensions
Spurious commas in sequence deleted by N. J. A. Sloane, Aug 02 2009
Offset corrected, extended by R. J. Mathar, Aug 27 2009
Edited by Joerg Arndt, Sep 04 2011