A161731 Expansion of (1-3*x)/(1-8*x+14*x^2).
1, 5, 26, 138, 740, 3988, 21544, 116520, 630544, 3413072, 18476960, 100032672, 541583936, 2932214080, 15875537536, 85953303168, 465368899840, 2519604954368, 13641675037184, 73858930936320, 399887996969984
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-14).
Programs
-
Magma
[Floor(((2+Sqrt(2))*(4+Sqrt(2))^n+(2-Sqrt(2))*(4-Sqrt(2))^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
-
Mathematica
CoefficientList[Series[(1-3x)/(1-8x+14x^2),{x,0,30}],x] (* or *) LinearRecurrence[{8,-14},{1,5},30] (* Harvey P. Dale, Feb 29 2024 *)
-
PARI
F=nfinit(x^2-2); for(n=0, 20, print1(nfeltdiv(F, ((2+x)*(4+x)^n+(2-x)*(4-x)^n), 4)[1], ",")) \\ Klaus Brockhaus, Jun 19 2009
Formula
a(n) = ((2+sqrt(2))*(4+sqrt(2))^n+(2-sqrt(2))*(4-sqrt(2))^n)/4.
a(n) = 8*a(n-1)-14*a(n-2). - R. J. Mathar, Jun 18 2009
Extensions
Extended by R. J. Mathar and Klaus Brockhaus, Jun 18 2009
Edited by Klaus Brockhaus, Jul 05 2009
Comments