cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A257937 Primes p such that one digit appears exactly six times together with a single different digit.

Original entry on oeis.org

1111151, 1111181, 1111211, 1111711, 1114111, 1117111, 1171111, 2999999, 3233333, 3331333, 3333133, 3333233, 3333313, 3333331, 3333373, 3333383, 3333433, 3337333, 3353333, 3433333, 3733333, 4999999, 7477777, 7577777, 7727777, 7772777, 7774777, 7777727, 7778777, 7877777, 9899999, 9929999, 9999299, 9999929, 9999991
Offset: 1

Views

Author

K. D. Bajpai, Jul 13 2015

Keywords

Comments

All the terms are congruent to 1 or 2 (mod 3).
In no term does the digit 0, 2, 4, 5, 6, or 8 appear six times.

Examples

			a(1) = 1111151 has exactly six 1's together with a single digit 5.
a(8) = 2999999 has exactly six 9's together with a single digit 2.
		

Crossrefs

Programs

  • Maple
    sort(select(isprime, [seq(seq(seq(d*1111111 + (a-d)*10^k, k=0..6), a={$1..9} minus {d}),d=1..9)])); # Robert Israel, Jul 13 2015
  • Mathematica
    kQ[n_]:= Module[{d=Select[DigitCount[n], # > 0 &]},Length[d] == 2 && Min[d] == 1 && Max[d] == 6]; Select[Table[Prime[n], {n, 1000000}], kQ]
    Select[Prime[Range[80000, 400000]], MemberQ[DigitCount[#], 6] &] (* Vincenzo Librandi, Jul 14 2015 *)

A161848 Primes with at least one digit appearing exactly three times in the decimal expansion.

Original entry on oeis.org

1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 2333, 2777, 2999, 3313, 3323, 3331, 3343, 3373, 3433, 3533, 3733, 3833, 4111, 4441, 4447, 4999, 5333, 5557, 6661, 7177, 7333, 7477, 7577, 7717, 7727, 7757, 7877, 8111, 8887, 8999, 9199, 9929
Offset: 1

Views

Author

Ki Punches, Jun 20 2009

Keywords

Comments

Sequence is probably infinite.

Examples

			2333, 3313, 3833 all repeat some digit 3 three times.
		

Crossrefs

Programs

  • Maple
    isdgctm := proc(n,d) local dgs,a,i ; dgs := convert(n,base,10) ; a := [seq(0,j=0..9)] ;
    for i in dgs do a := subsop(i+1=op(i+1,a)+1,a) ; od: if convert(a,set) intersect {d} <> {} then true; else false; fi; end:
    for n from 1 to 2000 do p := ithprime(n) ; if isdgctm(p,3) then printf("%d,",p) ; fi; od: # R. J. Mathar, Jun 21 2009

Extensions

Edited and corrected by R. J. Mathar, Jun 21 2009
Showing 1-2 of 2 results.