A161863 Numbers k such that k^2+k+3 and k^2+k-3 are both prime.
4, 7, 10, 22, 25, 34, 70, 79, 112, 130, 139, 172, 187, 217, 229, 262, 274, 295, 304, 322, 337, 364, 397, 400, 472, 499, 574, 580, 592, 622, 634, 655, 664, 697, 829, 844, 925, 1057, 1144, 1165, 1255, 1300, 1309, 1357, 1414, 1420, 1489, 1537, 1642, 1669, 1744
Offset: 1
Examples
4 is in the list because 16+4+-3 = 23 and 17 are primes. 7 is in the list because 49+7+-3 = 53 and 59 are primes.
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [1..1750]| IsPrime(k^2+k+3) and IsPrime(k^2+k-3)]; // Marius A. Burtea, Feb 17 2020
-
Mathematica
q=3;lst3={};Do[p=n^2+n;If[PrimeQ[p-q]&&PrimeQ[p+q],AppendTo[lst3,n]],{n,0,7!}];lst3 Select[Range[2000],AllTrue[#^2+#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 01 2019 *)
Extensions
Definition rephrased by R. J. Mathar, Jun 27 2009