A161905 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with a(1)..a(6) as shown.
2, 4, 13, 52, 221, 949, 4056, 17186, 72163, 300482, 1241981, 5100758, 20833813, 84695026, 342920942, 1383646433, 5566235714, 22334785486, 89420529809, 357319721889, 1425447435997, 5678246483273, 22590565547134, 89775857333032, 356428030609222, 1413891596961194, 5604509198580578
Offset: 1
Examples
It can be shown that 4*X(5) - X(7) = sqrt(26*(13+3*sqrt(13))), 4*X(7) - X(9) = 13*(sqrt(13) - 1)*sqrt(2*(13 + 3*sqrt(13)))/4, and 4*X(11) - X(13) = 130*(sqrt(13) - 2)*sqrt(2*(13 + 3*sqrt(13)))/4, which implies (4*X(7) - X(9))/(4*X(5) - X(7)) = 13*(sqrt(13) - 1) and (4*X(11) - X(13))/(4*X(7) - X(9)) = 10*(sqrt(13) - 2)/(sqrt(13) - 1) = 5*(11 - sqrt(13))/6. We also have a(6) - a(3) - a(1) = 4000, a(9) - 2*a(4) - a(3) + 3*a(1) = 300000, and a(11) - a(5) + a(4) - 2*a(2) - a(1) = 5100000.
References
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, (abstract) see p. 15.
- Index entries for linear recurrences with constant coefficients, signature (13,-65,156,-182,91,-13).
Programs
-
Mathematica
LinearRecurrence[{13,-65,156,-182,91,-13}, {2,4,13,52,221,949}, 30] CoefficientList[Series[(2-22 x+91 x^2-169 x^3+130 x^4-26 x^5)/(1-13 x+ 65 x^2- 156 x^3+182 x^4-91 x^5+13 x^6),{x,0,40}],x] (* Harvey P. Dale, Jun 05 2021 *)
Formula
G.f.: -x*(-2 + 22*x - 91*x^2 + 169*x^3 - 130*x^4 + 26*x^5) / (1 - 13*x + 65*x^2 - 156*x^3 + 182*x^4 - 91*x^5 + 13*x^6). - R. J. Mathar, Sep 18 2012
Extensions
Better name from Joerg Arndt, Sep 17 2012
Comments