A161917 Numbers n for which the sum of their prime factors (with repetition) divides the sum of their divisors.
12, 15, 35, 42, 60, 63, 66, 68, 84, 90, 95, 110, 114, 119, 140, 143, 152, 168, 189, 195, 204, 209, 216, 234, 245, 258, 264, 270, 280, 287, 290, 294, 297, 319, 322, 323, 352, 368, 377, 380, 384, 396, 470, 476, 480, 506, 510, 527, 531, 544, 552, 558, 559, 572
Offset: 1
Examples
n=12: Sum_divisors (1,2,3,4,6,12) = 28; Sum_prime_factors (2,2,3) =7 -> 28/7 = 4. n=319: Sum_divisors (1,11,29,319) = 360; Sum_prime_factors (11,29) =40 -> 360/40 = 9.
Links
- Carl R. White, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A161918
Programs
-
Maple
with(numtheory); P:=proc(q) local a,n; for n from 2 to q do if not isprime(n) then a:=ifactors(n)[2]; if type(sigma(n)/add(a[k][1]*a[k][2],k=1..nops(a)),integer) then print(n); fi; fi; od; end: P(10^4);
-
Mathematica
Select[Range[2,600],Divisible[DivisorSigma[1,#],Total[ Times@@@ FactorInteger[#]]]&] (* Harvey P. Dale, Dec 09 2010 *)
Formula
Extensions
Offset corrected by R. J. Mathar, Jun 26 2009