A161986 a(n) = k+r where k is composite(n) and r is (largest prime divisor of k) mod (smallest prime divisor of k).
4, 7, 8, 9, 11, 13, 15, 17, 16, 19, 21, 22, 23, 25, 25, 27, 27, 29, 31, 32, 35, 35, 37, 37, 39, 40, 41, 43, 45, 47, 47, 49, 49, 51, 53, 53, 55, 56, 57, 58, 59, 61, 63, 64, 64, 68, 67, 69, 71, 71, 73, 75, 77, 77, 81, 79, 81, 81, 83, 85, 87, 87, 89, 89, 91, 97, 93, 94, 95, 99, 97
Offset: 1
Keywords
Examples
n = 1: composite(1) = 4; (largest prime divisor of 4) = (smallest prime divisor 4) = 2; 2 mod 2 = 0. Hence a(1) = 4+0 = 4. n = 5: composite(5) = 10; (largest prime divisor of 10) = 5; (smallest prime divisor 10) = 2; 5 mod 2 = 1. Hence a(5) = 10+1 = 11.
Links
- Bill McEachen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[ n + D[ #D] mod D[1]: n in [2..100] | not IsPrime(n) where D is PrimeDivisors(n) ];
-
PARI
genit(maxx=1000)={ctr=0;arr=List();forcomposite(k=4,+oo,v=factor(k)[,1];r=v[#v]%v[1];ctr+=1;if(ctr>=maxx,break);listput(arr,k+r));arr} \\ Bill McEachen, Nov 17 2021
Comments