cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162170 Matrix inverse of A162169.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 0, 3, 1, 5, 0, 6, 0, 1, 16, 0, 20, 0, 5, 1, 61, 0, 75, 0, 15, 0, 1, 272, 0, 336, 0, 70, 0, 7, 1, 1385, 0, 1708, 0, 350, 0, 28, 0, 1, 7936, 0, 9792, 0, 2016, 0, 168, 0, 9, 1, 50521, 0, 62325, 0, 12810, 0, 1050, 0, 45, 0, 1, 353792, 0, 436480, 0, 89760, 0, 7392, 0
Offset: 1

Views

Author

Mats Granvik, Jun 27 2009

Keywords

Comments

First column appears to be A000111. Third column is A162171. Row sums minus A000035 appears to be A062272.
The above remarks are correct. - Peter Bala, Sep 08 2021

Examples

			Table begins:
   1
   1   1
   1   0   1
   2   0   3   1
   5   0   6   0   1
  16   0  20   0   5   1
  61   0  75   0  15   0   1
		

Crossrefs

Programs

  • Maple
    A000111 := n -> n!*coeff(series(sec(x) + tan(x), x, n+1), x, n):
    seq(seq(0^(n-k)*((1 - (-1)^k)*(1/2))*((1 - (-1)^n)*(1/2)) + ((1 + (-1)^k)*(1/2))*binomial(n, k)*A000111(n-k), k = 0..n), n = 0..11);  # Peter Bala, Sep 08 2021
  • PARI
    T(n, k) = if (k % 2, binomial(n-1, k-1) * (-1)^floor((n+k-1)/2), if (n==k, 1, 0));
    tabl(nn) = {m = matrix(nn, nn, n, k, if (n>=k, T(n,k), 0)); m = m^(-1); for (n=1, nn, for (k=1, n, print1(m[n,k], ", ");); print(););} \\ Michel Marcus, Jun 17 2015

Formula

From Peter Bala, Sep 08 2021: (Start)
Assuming an offset of 0: T(2*n+1,2*n+1) = 1 for n >= 0 else otherwise T(n,k) = (1 + (-1)^k)/2*binomial(n,k)*A000111(n-k).
E.g.f.: (sec(x) + tan(x))*cosh(t*x) + sinh(t*x) = 1 + (1 + t)*x + (1 + t^2)*x^2/2! + (2 + 3*t^2 + t^3)*x^3/3! + .... (End)