cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162171 Third column of A162170.

Original entry on oeis.org

1, 3, 6, 20, 75, 336, 1708, 9792, 62325, 436480, 3334386, 27595776, 245951615, 2348666880, 23923317720, 258910994432, 2966901358185, 35886973648896, 456927138333790, 6108665873694720, 85555744482868275, 1252729007440396288, 19140289332506060676
Offset: 1

Views

Author

Mats Granvik, Jun 27 2009

Keywords

Crossrefs

Programs

  • PARI
    T(n, k) = if (k % 2, binomial(n-1, k-1) * (-1)^floor((n+k-1)/2), if (n==k, 1 , 0));
    lista(nn) = {m = matrix(nn, nn, n, k, if (n>=k, T(n,k), 0)); m = m^(-1); for (n=3, nn, print1(m[n,3], ", "));} \\ Michel Marcus, Jun 17 2015
    
  • PARI
    lista(nn) = { a = [1]; for(n = 2, nn, a = concat(a, sum(k = 1, j = floor(n/2), (-1)^(j+k) * binomial(n+1, 2*k) * a[2*k-1]))); print(a) } \\ Mike Tryczak, Jun 18 2015

Formula

a(n) = Sum_{k=1..floor(n/2)} (-1)^(floor(n/2)+k) * binomial(n+1, 2*k) * a(2*k-1) for n > 1. - Mike Tryczak, Jun 18 2015
a(n) = n*(n+1)/2 * A000111(n-1) (conjectured). - Mike Tryczak, Jun 17 2015
The above conjecture by Tryczak is correct. With an offset of 2, the e.g.f. is x^2/2!*(sec(x) + tan(x)). - Peter Bala, Sep 08 2021
a(n) is the number of ranked unlabeled binary tree shapes compatible with the binary perfect phylogeny (n,3). - Noah A Rosenberg, Jun 03 2022

Extensions

Sequence corrected and extended by Mike Tryczak, Jun 17 2015