cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A162396 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 2.

Original entry on oeis.org

5, 2, 10, 4, 20, 8, 40, 16, 80, 32, 160, 64, 320, 128, 640, 256, 1280, 512, 2560, 1024, 5120, 2048, 10240, 4096, 20480, 8192, 40960, 16384, 81920, 32768, 163840, 65536, 327680, 131072, 655360, 262144, 1310720, 524288, 2621440, 1048576, 5242880
Offset: 1

Views

Author

Klaus Brockhaus, Jul 02 2009

Keywords

Comments

Binomial transform is A162268. Fifth binomial transform is A083880 without initial 1.

Crossrefs

Programs

  • Magma
    [ n le 2 select 8-3*n else 2*Self(n-2): n in [1..41] ];
    
  • Magma
    [Floor((3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n))):  n in [1..50]]; // Vincenzo Librandi, Oct 09 2017
  • Maple
    A162396:=n->(3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n)): seq(A162396(n), n=1..60); # Wesley Ivan Hurt, Oct 08 2017
  • Mathematica
    CoefficientList[Series[(5 + 2*x)/(1 - 2*x^2), {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 08 2017 *)
    RecurrenceTable[{a[1]==5, a[2]==2, a[n]==2 a[n-2]}, a, {n, 40}] (* Vincenzo Librandi, Oct 09 2017 *)

Formula

a(n) = (3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n)).
G.f.: x*(5+2*x)/(1-2*x^2).

Extensions

G.f. corrected, formula simplified, comment added by Klaus Brockhaus, Sep 18 2009
Showing 1-1 of 1 results.