cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A162275 a(n) = 10*a(n-1) - 22*a(n-2) for n > 1; a(0) = 2, a(1) = 13.

Original entry on oeis.org

2, 13, 86, 574, 3848, 25852, 173864, 1169896, 7873952, 53001808, 356791136, 2401871584, 16169310848, 108851933632, 732794497664, 4933202436736, 33210545418752, 223575000579328, 1505118006580736, 10132530053062144, 68212704385845248, 459211382691085312
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009

Keywords

Comments

Binomial transform of A162274.

Crossrefs

Cf. A162274.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((2+r)*(5+r)^n+(2-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 05 2009
  • Maple
    a := proc (n) options operator, arrow; expand((1/2)*(2+sqrt(3))*(5+sqrt(3))^n+(1/2)*(2-sqrt(3))*(5-sqrt(3))^n) end proc: seq(a(n), n = 0 .. 20); # Emeric Deutsch, Jul 09 2009
  • Mathematica
    CoefficientList[Series[(2 - 7 z)/(22 z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *)
    LinearRecurrence[{10,-22},{2,13},30] (* Harvey P. Dale, Jun 14 2017 *)

Formula

a(n) = 10*a(n-1) - 22*a(n-2) for n > 1; a(0) = 2, a(1) = 13.
a(n) = ((2+sqrt(3))*(5+sqrt(3))^n + (2-sqrt(3))*(5-sqrt(3))^n)/2.
G.f.: (2-7*x)/(1-10*x+22*x^2).

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 05 2009

A162273 a(n) = ((2+sqrt(3))*(3+sqrt(3))^n + (2-sqrt(3))*(3-sqrt(3))^n)/2.

Original entry on oeis.org

2, 9, 42, 198, 936, 4428, 20952, 99144, 469152, 2220048, 10505376, 49711968, 235239552, 1113165504, 5267555712, 24926341248, 117952713216, 558158231808, 2641233111552, 12498449278464, 59143297001472, 279869086338048
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009

Keywords

Comments

Binomial transform of A001075 without initial term 1, inverse binomial transform of A162274.
The INVERTi transform yields A007051 without A007051(0). - R. J. Mathar, Jul 07 2009

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((2+r)*(3+r)^n+(2-r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 05 2009
  • Maple
    seq(simplify(((2+sqrt(3))*(3+sqrt(3))^n+(2-sqrt(3))*(3-sqrt(3))^n)*1/2), n = 0 .. 22); # Emeric Deutsch, Jul 11 2009
  • Mathematica
    LinearRecurrence[{6,-6},{2,9},30] (* Harvey P. Dale, Dec 17 2019 *)

Formula

a(n) = 6*a(n-1) - 6*a(n-2) for n > 1; a(0) = 2, a(1) = 9.
G.f.: (2-3*x)/(1-6*x+6*x^2).
a(n) = 2*A030192-3*A030192(n-1). - R. J. Mathar, Feb 04 2021

Extensions

Edited and extended beyond a(5) by R. J. Mathar and Klaus Brockhaus, Jul 05 2009
Showing 1-2 of 2 results.