A196840 Duplicate of A162298.
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, 0, 1, 1, 1, 0, -1, 0, 5, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, 1, 0, -7, 0, 7, 1, 1, -1, 0, 2, 0, -7, 0, 2, 1, 1, 0, -3, 0, 1, 0, -7, 0, 3, 1, 1, 5, 0, -1, 0, 1, 0, -1, 0, 5, 1, 1
Offset: 0
Keywords
Examples
The triangle a(k,m) starts with k\m 1 2 3 4 5 6 7 8 9 10 11 ... 0: 1 1: 1 1 2: 1 1 1 3: 0 1 1 1 4: -1 0 1 1 1 5: 0 -1 0 5 1 1 6: 1 0 -1 0 1 1 1 7: 0 1 0 -7 0 7 1 1 8: -1 0 2 0 -7 0 2 1 1 9: 0 -3 0 1 0 -7 0 3 1 1 10: 5 0 -1 0 1 0 -1 0 5 1 1 ... The rational number triangle a(k,m)/A162299(k+1,m) starts with k\m 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 1/2 1/2 2: 1/6 1/2 1/3 3: 0 1/4 1/2 1/4 4: -1/30 0 1/3 1/2 1/5 5: 0 -1/12 0 5/12 1/2 1/6 6: 1/42 0 -1/6 0 1/2 1/2 1/7 7: 0 1/12 0 -7/24 0 7/12 1/2 1/8 8: -1/30 0 2/9 0 -7/15 0 2/3 1/2 1/9 ... Sigma n^4 = sum(j^4,j=1..n) = -(1/30)*n + (1/3)*n^3 + (1/2)*n^4 + (1/5)*n^5. For n>=1 this is the sequence A000538(n).
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991 (Seventh printing).Second ed. 1994.
- R. Remmert, Funktionentheorie I, Zweite Auflage, Springer-Verlag, 1989. English version: Classical topics in complex function theory, Springer, 1998.
Programs
-
Mathematica
row[k_] := Numerator[ Rest[ CoefficientList[ HarmonicNumber[n, -k], n]]]; Flatten[ Table[ row[k], {k, 0, 10}]] (* Jean-François Alcover, Dec 07 2011 *)
Comments