cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162307 Primes of the form k*(k+2)/3 - 2, k > 0.

Original entry on oeis.org

3, 19, 31, 83, 131, 223, 383, 479, 643, 1279, 1823, 2131, 2239, 2579, 2819, 3331, 4483, 4639, 6163, 6719, 7103, 7699, 8963, 9631, 9859, 10559, 11779, 13331, 14143, 14419, 15263, 17939, 19843, 21503, 22531, 24659, 25759, 28031, 29599, 30803, 35423
Offset: 1

Views

Author

Keywords

Comments

Or: primes of the form k*(k+1)*(k+2)/(k+(k+1)+(k+2))-2.
Generated by k=3, 7, 9, 15, 19, 25, 33, 37, 43, ....
Primes p such that 3*p+7 is a square. - Vincenzo Librandi, Dec 05 2015
Primes of the forms 3*k^2 + 2*k - 2 and 3*k^2 + 4*k - 1. - Robert Israel, Nov 27 2017

Examples

			k=3 contributes a term because 3*(3+2)/3 - 2 = 3 = a(1) is prime.
		

Programs

  • Magma
    [p: p in PrimesUpTo(45000) | IsSquare(3*p+7)]; // Vincenzo Librandi, Dec 05 2015
    
  • Maple
    select(isprime, [seq(seq((3*j+i)*(3*j+i+2)/3-2, i=0..1),j=1..1000)]); # Robert Israel, Nov 27 2017
  • Mathematica
    f[n_]:=(n*(n+1)*(n+2))/(n+(n+1)+(n+2))-2; lst={};Do[p=f[n];If[PrimeQ[p], AppendTo[lst,p]],{n,6!}];lst
    Select[Table[(k(k+2))/3-2,{k,350}],PrimeQ] (* Harvey P. Dale, May 10 2014 *)
  • PARI
    forprime(p=2, 1e5, if(issquare(3*p+7), print1(p , ", "))) \\ Altug Alkan, Dec 05 2015

Extensions

Definition simplified by R. J. Mathar, Jul 02 2009