A162307 Primes of the form k*(k+2)/3 - 2, k > 0.
3, 19, 31, 83, 131, 223, 383, 479, 643, 1279, 1823, 2131, 2239, 2579, 2819, 3331, 4483, 4639, 6163, 6719, 7103, 7699, 8963, 9631, 9859, 10559, 11779, 13331, 14143, 14419, 15263, 17939, 19843, 21503, 22531, 24659, 25759, 28031, 29599, 30803, 35423
Offset: 1
Examples
k=3 contributes a term because 3*(3+2)/3 - 2 = 3 = a(1) is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p: p in PrimesUpTo(45000) | IsSquare(3*p+7)]; // Vincenzo Librandi, Dec 05 2015
-
Maple
select(isprime, [seq(seq((3*j+i)*(3*j+i+2)/3-2, i=0..1),j=1..1000)]); # Robert Israel, Nov 27 2017
-
Mathematica
f[n_]:=(n*(n+1)*(n+2))/(n+(n+1)+(n+2))-2; lst={};Do[p=f[n];If[PrimeQ[p], AppendTo[lst,p]],{n,6!}];lst Select[Table[(k(k+2))/3-2,{k,350}],PrimeQ] (* Harvey P. Dale, May 10 2014 *)
-
PARI
forprime(p=2, 1e5, if(issquare(3*p+7), print1(p , ", "))) \\ Altug Alkan, Dec 05 2015
Extensions
Definition simplified by R. J. Mathar, Jul 02 2009
Comments