A162313 Triangular array P*(2*I - P^2)^-1, where P is Pascal's triangle A007318 and I is the identity matrix.
1, 3, 1, 17, 6, 1, 147, 51, 9, 1, 1697, 588, 102, 12, 1, 24483, 8485, 1470, 170, 15, 1, 423857, 146898, 25455, 2940, 255, 18, 1, 8560947, 2966999, 514143, 59395, 5145, 357, 21, 1, 197613377, 68487576, 11867996, 1371048, 118790, 8232, 476, 24, 1
Offset: 0
Examples
Triangle begins n\k|.......0.......1......2......3......4......5......6 ======================================================= 0..|.......1 1..|.......3.......1 2..|......17.......6......1 3..|.....147......51......9......1 4..|....1697.....588....102.....12......1 5..|...24483....8485...1470....170.....15......1 6..|..423857..146898..25455...2940....255.....18......1 ...
Crossrefs
Programs
-
Mathematica
m = 8; P = Table[Binomial[n, k], {n, 0, m}, {k, 0, m}]; T = P.Inverse[2 IdentityMatrix[m+1] - P.P]; Table[T[[n+1, k+1]], {n, 0, m}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 02 2019 *)
Formula
TABLE ENTRIES
(1)... T(n,k) = binomial(n,k)*A080253(n-k).
GENERATING FUNCTION
(2)... exp((x+1)*t)/(2-exp(2*t)) = 1 + (3+x)*t + (17+6*x+x^2)*t^2/2!
+ ....
The e.g.f. can also be written as
(3)... exp(x*t)*G(t), where G(t) = exp(t)/(2-exp(2*t)) is the e.g.f. for A080253.
ROW GENERATING POLYNOMIALS
The row generating polynomials R_n(x) form an Appell sequence. The first few values are R_0(x) = 1, R_1(x) = 3 + x, R_2(x) = 17 + 6*x + x^2 and R_3(x) = 147 + 51*x + 9*x^2 + x^3.
The row polynomials may be recursively computed by means of
(4)... R_n(x) = (x+1)^n + Sum_{k=0..n-1} 2^(n-k)*binomial(n,k)*R_k(x).
An explicit formula is
(5)... R_n(x) = Sum_{j = 0..n} Sum_{k = 0..j} (-1)^(j-k)*binomial(j,k)*(x+2*k+1)^n.
There is also a representation as an infinite series
(6)... R_n(x) = (1/2)*Sum_{k >= 0} (1/2)^k*(x+2*k+1)^n.
SUMS OF POWERS OF INTEGERS
The row polynomials satisfy the difference equation
(7)... 2*R_n(x) - R_n(x+2) = (x+1)^n,
and hence may be used to evaluate the weighted sums of powers of odd integers
(8)... Sum_{k=0..n-1} (1/2)^k*(2*k+1)^m = 2*R_m(0)-1/2^(n-1)*R_m(2*n)
as well as
(9)... Sum_{k=0..n-1} 2^k*(2*k+1)^m = (-1)^m*(2^n*R_m(-2*n)-R_m(0)).
For example, m = 2 gives
(10)... Sum_{k=0..n-1} (1/2)^k*(2*k+1)^2 = 34-2^(1-n)*(4*n^2+12*n+17)
and
(11)... Sum_{k = 0..n-1} 2^k*(2*k+1)^2 = 2^n*(4*n^2 - 12*n + 17)-17.
RELATIONS WITH OTHER SEQUENCES
(13)... Column 0 = [1,3,17,147,1697,...] = A080253.
The identity
(14)... R_n(2*x-1) = 2^n*P_n(x),
where P_n(x) are the row generating polynomials of A154921, provides a surprising connection between (6) and the result
(15)... Sum_{k = 0..n-1} (1/2)^k*k^m = 2*P_m(0) - (1/2)^(n-1)*P_m(n).
Comments