A162314 Row sums of A162313.
1, 4, 24, 208, 2400, 34624, 599424, 12107008, 279467520, 7257355264, 209403009024, 6646303019008, 230126121738240, 8632047179874304, 348695526455476224, 15091839203924574208, 696733490476660162560
Offset: 0
Programs
-
Maple
#A162314 with(combinat): a:= n -> 2^n*add(k!*Stirling2(n+1,k+1), k = 0..n): seq(a(n), n = 0..16);
Formula
a(n) = 2^n*A000629(n) = 2^n*Sum_{k = 0..n} k!*Stirling2(n+1,k+1).
E.g.f.: exp(2*x)/(2-exp(2*x)) = 1 + 4*x + 24*x^2/2! + 208*x^3/3! + ....
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 8*x*(k+1)/(8*x*(k+1) - 1 + 4*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
From Peter Bala, Jul 08 2022: (Start)
a(n) = Sum_{k = 0..n} (-2)^(n+k)*k!*Stirling2(n,k).
Conjectural o.g.f. as a continued fraction of Stieltjes type: 1/(1 - 4*x/(1 - 2*x/(1 - 8*x/(1 - 4*x/(1 - ... - 3*n*x/(1 - 2*n*x/(1 - ...))))))). (End)
Comments