cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162336 Primes p of the form p = r+(r+1)/2 (where r is a prime number).

Original entry on oeis.org

5, 11, 17, 29, 47, 71, 89, 101, 107, 191, 197, 227, 251, 269, 317, 359, 461, 467, 521, 569, 647, 659, 701, 719, 821, 857, 881, 911, 929, 947, 971, 1091, 1109, 1181, 1217, 1259, 1289, 1361, 1367, 1451, 1487, 1559, 1637, 1847, 1889, 1979, 2099, 2141, 2207
Offset: 1

Views

Author

Keywords

Comments

Or primes of the form Sum_{x=1..n-th prime} (1-(-1)^x*x). - Juri-Stepan Gerasimov, Jul 14 2009
Primes p such that (2*p-1)/3 is prime. - J. M. Bergot, Aug 19 2020

Examples

			3+2=5, 7+4=11, 11+6=17, 19+10=29, 31+16=47, 47+24=71,.. r:3,7,11,19,31,47,59,67,71,127,131,151,167,179,211,239,307,311, ..A158709.
		

Crossrefs

Cf. A158709.

Programs

  • Maple
    filter:= p -> isprime(p) and isprime((2*p-1)/3):
    select(filter, [seq(i,i=5..10000,6)]); # Robert Israel, Aug 19 2020
  • Mathematica
    lst={};Do[r=Prime[n];p=r+(r+1)/2;If[PrimeQ[p],AppendTo[lst,p]],{n,6!}];lst
    Select[#+(#+1)/2&/@Prime[Range[300]],PrimeQ] (* Harvey P. Dale, Apr 30 2015 *)

Extensions

Edited by N. J. A. Sloane, Jul 18 2009