cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments.

Original entry on oeis.org

3, 2, 5, 13, 11, 19, 17, 31, 29, 43, 41, 61, 59, 73, 71, 103, 101, 109, 107, 139, 137, 151, 149, 181, 179, 193, 191, 199, 197, 229, 227, 241, 239, 271, 269, 283, 281, 313, 311, 349, 347, 421, 419, 433, 431, 463, 461, 523, 521, 571, 569, 601, 599, 619, 617
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...).
See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA.
x Lower POBA Upper POBA POBA

Examples

			The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *)
    Numerator[tL]   (* A001359 *)
    Denominator[tL] (* A006512 *)
    Numerator[tU]   (* A006512 *)
    Denominator[tU] (* A001359 *)
    Numerator[y]    (* A265759 *)
    Denominator[y]  (* A265760 *)

A265761 Numerators of primes-only best approximates (POBAs) to 3/2; see Comments.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 29, 43, 47, 61, 71, 79, 89, 101, 107, 109, 151, 163, 191, 197, 223, 227, 251, 269, 271, 317, 349, 359, 421, 439, 461, 467, 521, 523, 569, 601, 613, 631, 647, 659, 673, 691, 701, 719, 811, 821, 853, 857, 881, 911, 919, 929, 947, 971, 991
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs for 3/2 start with 2/2, 5/3, 7/5, 11/7, 17/11, 19/13, 29/19, 43/29, 47/31. For example, if p and q are primes and q > 13, then 19/13 is closer to 3/2 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 3/2; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265761/A222565 *)
    Numerator[tL]   (* A104163 *)
    Denominator[tL] (* A158708 *)
    Numerator[tU]   (* A162336 *)
    Denominator[tU] (* A158709 *)
    Numerator[y]    (* A265761 *)
    Denominator[y]  (* A222565 *)

A175953 Let a(1)=1; for n>1 a(n)=nextprime(a(n-1)+(a(n-1)+1)/4).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 17, 23, 29, 37, 47, 59, 79, 101, 127, 163, 211, 269, 337, 431, 541, 677, 853, 1069, 1361, 1709, 2137, 2677, 3347, 4201, 5261, 6577, 8231, 10289, 12889, 16127, 20161, 25219, 31531, 39419, 49277, 61603, 77017, 96281, 120371, 150473
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 29 2010

Keywords

Comments

The following definition of nextprime(q) is used: if q is an integer and prime, nextprime(q)=q. If q is an integer and composite or rational, nextprime(q) is the smallest prime >q. [R. J. Mathar, Oct 30 2010]

Crossrefs

Programs

  • Maple
    nprime := proc(n) if type(n,'integer') then if isprime(n) then return n; else return nextprime(n) ; end if; else return nextprime(floor(n)) ; end if; end proc:
    A175953 := proc(n) option remember; if n= 1 then 1; else p := procname(n-1)+(procname(n-1)+1)/4 ; return nprime(p) ; end if; end proc:
    seq(A175953(n),n=1..120) ; # R. J. Mathar, Oct 30 2010

Extensions

More terms from R. J. Mathar, Oct 30 2010

A328058 Primes p such that 2*p-1 is a semiprime.

Original entry on oeis.org

5, 11, 13, 17, 29, 43, 47, 61, 67, 71, 73, 89, 101, 103, 107, 109, 127, 151, 181, 191, 197, 223, 227, 241, 251, 269, 277, 283, 317, 349, 359, 373, 397, 409, 421, 433, 457, 461, 467, 487, 521, 541, 569, 571, 631, 643, 647, 659, 673, 701, 709, 719, 733, 739, 751, 757, 769, 821, 857, 859, 881, 883
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Oct 03 2019

Keywords

Examples

			a(3)=13 is in the sequence because it is prime and 2*13-1=5^2 is a semiprime.
		

Crossrefs

Cf. A000040, A001358. Includes A067756 and A162336.

Programs

  • Magma
    [p: p in PrimesUpTo(1000)| &+[d[2]: d in Factorization(2*p-1)] eq 2]; // Marius A. Burtea, Oct 03 2019
    
  • Maple
    select(t -> isprime(t) and numtheory:-bigomega(2*t-1)=2, [2,seq(i,i=3..10000,2)]);
  • Mathematica
    Select[Prime@ Range@ 153, PrimeOmega[2 # - 1] == 2 &] (* Michael De Vlieger, Oct 03 2019 *)
  • PARI
    isok(p) = isprime(p) && (bigomega(2*p-1) == 2); \\ Michel Marcus, Oct 04 2019
Showing 1-4 of 4 results.