A162338 Primes q such that q = floor(p/3) for some prime p.
2, 3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 59, 79, 83, 89, 97, 103, 127, 139, 149, 163, 167, 173, 197, 199, 227, 233, 239, 257, 269, 293, 313, 317, 337, 349, 353, 367, 383, 397, 409, 419, 433, 439, 457, 479, 499, 503, 523, 569, 577, 607, 643, 659, 709, 757, 769
Offset: 1
Keywords
Examples
3 is in the sequence since 11 is prime and floor(11/3) = 3; 11 is not in the sequence since 11 = floor(34/3) = floor(35/3) and neither 34 nor 35 is prime.
Programs
-
Magma
[ q: q in PrimesUpTo(800) | IsPrime(3*q+1) or IsPrime(3*q+2) ]; // Klaus Brockhaus, Jul 06 2009
-
Mathematica
lst={};Do[r=Prime[n];If[PrimeQ[p=Floor[r/3]],AppendTo[lst,p]],{n,6!}];lst Select[Floor[Prime[Range[350]]/3],PrimeQ] (* Harvey P. Dale, Aug 26 2013 *) Select[Prime[Range[200]],AnyTrue[3#+{1,2},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 07 2019 *)
-
PARI
isA162338(n) = isprime(n) && (isprime(3*n+1) || isprime(3*n+2)) \\ Michael B. Porter, Jan 30 2010
Extensions
Edited and listed terms verified by Klaus Brockhaus, Jul 06 2009
Comments