cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162368 Number of reduced words of length n in the Weyl group D_26.

Original entry on oeis.org

1, 26, 350, 3250, 23399, 139204, 712179, 3220074, 13124124, 48942894, 168958960, 544988210, 1655019795, 4761697020, 13048465756, 34209731996, 86141195946, 209025000936, 490211005011, 1113996801606, 2458618650891, 5280637344216
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

First differs from A161933 at index n=26. - Andrew Howroyd, Mar 17 2025

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    f[m_] := (1-x^m)/(1-x);
    With[{k = 26}, CoefficientList[f[k]*Product[f[2i], {i, 1, k-1}] + O[x]^(k-4), x]] (* Jean-François Alcover, Feb 15 2023, after Maple code *)

Formula

The growth series for D_k is the polynomial f(k)*Product_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.