cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A266782 The growth series for the affine Coxeter (or Weyl) group [3,5] (or H_3).

Original entry on oeis.org

1, 4, 9, 16, 25, 37, 52, 69, 88, 110, 136, 165, 196, 229, 265, 304, 345, 388, 434, 484, 537, 592, 649, 709, 772, 837, 904, 974, 1048, 1125, 1204, 1285, 1369, 1456, 1545, 1636, 1730, 1828, 1929, 2032, 2137, 2245, 2356, 2469, 2584, 2702, 2824, 2949, 3076, 3205, 3337, 3472, 3609, 3748, 3890, 4036, 4185, 4336, 4489, 4645
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial; also Table 3.1 page 59.

Crossrefs

For the growth series for the finite group see A162495.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) )); // G. C. Greubel, Feb 04 2020
    
  • Maple
    m:= 60; S:=series((1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 04 2020
  • Mathematica
    CoefficientList[Series[(1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 07 2016 *)
  • PARI
    Vec( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) +O('x^60) ) \\ G. C. Greubel, Feb 04 2020
    
  • Sage
    def A266782_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2) ).list()
    A266782_list(60) # G. C. Greubel, Feb 04 2020

Formula

G.f.: (1+x)*(1+x^3)*(1+x^5)/((1-x+x^3-x^4+x^6-x^7)*(1-x)^2).
Showing 1-1 of 1 results.