A162506 Convergent of an infinite product, a*b*c,...; a = [1,1,1,...], b = [1,0,2,0,2,0,2,...], c = [1,0,0,3,0,0,3,0,0,3,...],...
1, 1, 3, 6, 12, 23, 42, 77, 132, 236, 390, 664, 1087, 1782, 2858, 4601, 7216, 11344, 17650, 27162, 41632, 63316, 95717, 143558, 214644, 318464, 470879, 691968, 1012866, 1474434, 2140606, 3088874, 4445440, 6370142, 9095564, 12941289, 18350398, 25930984
Offset: 1
Keywords
Examples
First few rows of the array = 1,...1,...1,...1,...1,... 1,...1,...3,...3,...5,... 1,...1,...3,...6,...8,... 1,...1,...3,...6,..12,... 1,...1,...3,...6,..12,... ...tending to A162506: (1, 1, 3, 6, 12, 23, 42, 77, 132,...)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +add(b(n-i*j, i-1)*i, j=1..n/i))) end: a:= n-> b(n-1, n-1): seq(a(n), n=1..50); # Alois P. Heinz, Feb 26 2013
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[x*Product[1+k*x^k/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 08 2016 *)
Formula
Convergent of an infinite product, a*b*c,...; a = [1,1,1,...], b =
[1,0,2,0,2,0,2,...], c = [1,0,0,3,0,0,3,0,0,3,...]; i.e. the infinite set of
sequences [1,...N,...,] interleaved with (N-2) adjacent zeros.
G.f.: x*Product(1+k*x^k/(1-x^k),k=1..infinity). - Vladeta Jovovic, Jul 24 2009
Extensions
More terms from Vladeta Jovovic, Jul 22 2009
Comments