cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A162507 Triangle read by rows, finite differences of an array generated by an infinite product (Cf. A162506).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 4, 3, 4, 1, 4, 9, 4, 5, 1, 6, 12, 12, 5, 6, 1, 6, 18, 24, 15, 6, 7, 1, 8, 24, 36, 30, 18, 7, 8, 1, 8, 33, 60, 60, 36, 21, 8, 9, 1, 10, 39, 88, 95, 72, 42, 24, 9, 10, 1, 10, 51, 124, 160, 138, 84, 48, 27, 10, 11
Offset: 2

Views

Author

Gary W. Adamson, Jul 04 2009

Keywords

Comments

Row sums = A162506 starting (1, 3, 6, 12, 23, 42, 77,...).

Examples

			The array =
1,...1,...1,...1,...1,...; = a
1,...1,...3,...3,...5,...; = a*b
1,...1,...3,...6,...8,...; = a*b*c
1,...1,...3,...6,..12,...; = a*b*c*d
...
taking finite differences from the top, then discarding the first "1",
we obtain triangle A162507:
1;
1, 2;
1, 2, 3;
1, 4, 3, 4;
1, 4, 9, 4, 5;
1, 6, 12, 12, 5, 6;
1, 6, 18, 24, 15, 6, 7;
1, 8, 24, 36, 30, 18, 7, 8;
1, 8, 33, 60, 60, 36, 21, 8, 9;
1, 10, 39, 88, 95, 72, 42, 24, 9, 10;
1, 10, 51, 124, 160, 138, 84, 48, 27, 10, 11;
...
		

Crossrefs

Cf. A162506.

Formula

Given the infinite product and array shown in A162506, we have
a = [1,1,1,...], b = [1,0,2,0,2,0,2,...], c = [1,0,0,3,0,0,3,0,0,3,...];
The array is a, a*b, a*b*c,... Finite differences of array columns = rows of the triangle, deleting the first "1".

A267007 Expansion of Product_{k>=1} (1 + (k-1)*x^k).

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 8, 16, 20, 42, 51, 92, 132, 204, 299, 476, 644, 978, 1488, 2024, 3048, 4318, 6248, 8596, 12555, 17378, 24740, 34310, 47940, 65842, 93221, 125238, 173848, 239348, 324724, 445882, 602140, 816424, 1101096, 1495382, 1991892, 2684252, 3598248
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 08 2016

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Aug 15 2019
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1+(k-1)*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 0; Do[Do[poly[[j+1]] += (k-1)*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly

A163318 Expansion of g.f.: Product_{k>=1} 1+k*x^k/(1-x^k)^2.

Original entry on oeis.org

1, 1, 4, 8, 19, 36, 76, 142, 272, 496, 900, 1592, 2784, 4792, 8138, 13688, 22703, 37380, 60838, 98310, 157298, 250162, 394332, 618032, 961512, 1487563, 2286610, 3496776, 5316666, 8044598, 12110538, 18147166, 27068692, 40203306, 59459998, 87587428, 128522850
Offset: 0

Views

Author

Vladeta Jovovic, Jul 24 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*(j*i), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 25 2013
  • Mathematica
    terms = 40;
    CoefficientList[Product[1 + k x^k/(1 - x^k)^2, {k, 1, terms}] + O[x]^terms, x] (* Jean-François Alcover, Nov 12 2020 *)

A346788 Product over all partitions lambda of n of the product of distinct parts in lambda.

Original entry on oeis.org

1, 1, 2, 6, 48, 1440, 414720, 2090188800, 1155790798848000, 226483217146419609600000, 302971317675145105975227187200000000, 37917003542135076706761224377027811868672000000000000, 45800346382799680410294841758069930049013501333211737122406400000000000000000
Offset: 0

Views

Author

Alois P. Heinz, Aug 03 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(i, i=map(x-> {x[]}[], combinat[partition](n))):
    seq(a(n), n=0..12);
  • Mathematica
    a[n_] := Times @@ Times @@@ Union /@ IntegerPartitions[n];
    a /@ Range[0, 20] (* Jean-François Alcover, Aug 09 2021 *)
  • PARI
    a(n) = vecprod(apply(x->vecprod(Set(x)), partitions(n))); \\ Michel Marcus, Aug 04 2021

Formula

a(n) = A230053(n) for n <= 6.

A369887 Sum of products of squares of parts , counted without multiplicity, in all partitions of n.

Original entry on oeis.org

1, 1, 5, 14, 34, 95, 208, 537, 1090, 2812, 5566, 12480, 26199, 53486, 112866, 229111, 450800, 885030, 1778190, 3319846, 6624376, 12354288, 23674929, 43485580, 81441398, 149864634, 273431081, 503205344, 906757150, 1630802024, 2920280596, 5166820832
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2024

Keywords

Examples

			The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1. So a(4) = 16 + 9 + 4 + 4 + 1 = 34.
		

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(prod(k=1, N, 1+k^2*x^k/(1-x^k)))

Formula

G.f.: Product_{k>=1} 1 + k^2*x^k/(1-x^k).

A369888 Sum of products of cubes of parts , counted without multiplicity, in all partitions of n.

Original entry on oeis.org

1, 1, 9, 36, 108, 449, 1212, 4499, 10914, 43286, 103296, 306994, 867763, 2165484, 6627800, 16827227, 42203212, 104397436, 282967414, 632194758, 1809241372, 4120266946, 10256452121, 23140530512, 55030272918, 130803096050, 291295024121, 739011803928, 1634625423738
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2024

Keywords

Examples

			The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1. So a(4) = 64 + 27 + 8 + 8 + 1 = 108.
		

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(prod(k=1, N, 1+k^3*x^k/(1-x^k)))

Formula

G.f.: Product_{k>=1} 1 + k^3*x^k/(1-x^k).
Showing 1-6 of 6 results.