cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A162506 Convergent of an infinite product, a*b*c,...; a = [1,1,1,...], b = [1,0,2,0,2,0,2,...], c = [1,0,0,3,0,0,3,0,0,3,...],...

Original entry on oeis.org

1, 1, 3, 6, 12, 23, 42, 77, 132, 236, 390, 664, 1087, 1782, 2858, 4601, 7216, 11344, 17650, 27162, 41632, 63316, 95717, 143558, 214644, 318464, 470879, 691968, 1012866, 1474434, 2140606, 3088874, 4445440, 6370142, 9095564, 12941289, 18350398, 25930984
Offset: 1

Views

Author

Gary W. Adamson, Jul 04 2009

Keywords

Comments

Equals row sums of triangle A162507.
With offset 0, sum of products of parts, counted without multiplicity, in all partitions of n. Sum of products of parts, counted with multiplicity, in all partitions of n is A006906. - Vladeta Jovovic, Jul 24 2009

Examples

			First few rows of the array =
1,...1,...1,...1,...1,...
1,...1,...3,...3,...5,...
1,...1,...3,...6,...8,...
1,...1,...3,...6,..12,...
1,...1,...3,...6,..12,...
...tending to A162506: (1, 1, 3, 6, 12, 23, 42, 77, 132,...)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*i, j=1..n/i)))
        end:
    a:= n-> b(n-1, n-1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 26 2013
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[x*Product[1+k*x^k/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 08 2016 *)

Formula

Convergent of an infinite product, a*b*c,...; a = [1,1,1,...], b =
[1,0,2,0,2,0,2,...], c = [1,0,0,3,0,0,3,0,0,3,...]; i.e. the infinite set of
sequences [1,...N,...,] interleaved with (N-2) adjacent zeros.
G.f.: x*Product(1+k*x^k/(1-x^k),k=1..infinity). - Vladeta Jovovic, Jul 24 2009

Extensions

More terms from Vladeta Jovovic, Jul 22 2009

A267004 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - x^k)).

Original entry on oeis.org

1, 2, 5, 12, 24, 50, 97, 184, 331, 606, 1061, 1834, 3125, 5228, 8673, 14250, 23034, 36894, 58750, 92298, 144398, 223994, 344916, 527116, 801295, 1209870, 1816539, 2713956, 4033169, 5961700, 8775236, 12852444, 18742153, 27225316, 39371647, 56743200, 81467211
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 08 2016

Keywords

Comments

Convolution of A022629 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

A267008 Expansion of Product_{k>=1} (1 + (k+1)*x^k).

Original entry on oeis.org

1, 2, 3, 10, 13, 28, 58, 90, 146, 260, 481, 688, 1168, 1748, 2863, 4726, 6938, 10412, 16140, 23746, 35702, 55812, 79032, 116758, 168779, 247006, 350310, 513410, 744286, 1045466, 1485685, 2098780, 2935416, 4137878, 5746618, 8027612, 11343706, 15487222, 21418682
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 08 2016

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Aug 15 2019
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1+(k+1)*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; Do[Do[poly[[j+1]] += (k+1)*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly

A319110 Expansion of Product_{k>=1} 1/(1 - (k - 1)*x^k).

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 13, 18, 37, 56, 101, 152, 285, 410, 713, 1118, 1830, 2780, 4618, 6934, 11278, 17092, 26894, 40822, 64435, 96372, 149299, 225104, 345131, 515394, 788176, 1169962, 1772957, 2632458, 3950365, 5849260, 8748993, 12867848, 19135894, 28126614, 41598695
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
           0^n, b(n, i-1)+(i-1)*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Aug 19 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - (k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[(j - 1)^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (d - 1)^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j - 1)^k*x^(j*k)/k).
From Vaclav Kotesovec, Sep 11 2018: (Start)
a(n) ~ c * 2^(2*n/5), where
c = 28108804.248904780960402246466460350520790117596512766842168... if mod(n,5) = 0
c = 28108804.010850549080284030388905319123062152339902207992657... if mod(n,5) = 1
c = 28108804.067769166625741650205643600577757560110636366636106... if mod(n,5) = 2
c = 28108804.083581827971851596540314974909801290757084687583764... if mod(n,5) = 3
c = 28108804.058853893104368046896759214442695016905368229405793... if mod(n,5) = 4
(End)
Showing 1-4 of 4 results.