A162506
Convergent of an infinite product, a*b*c,...; a = [1,1,1,...], b = [1,0,2,0,2,0,2,...], c = [1,0,0,3,0,0,3,0,0,3,...],...
Original entry on oeis.org
1, 1, 3, 6, 12, 23, 42, 77, 132, 236, 390, 664, 1087, 1782, 2858, 4601, 7216, 11344, 17650, 27162, 41632, 63316, 95717, 143558, 214644, 318464, 470879, 691968, 1012866, 1474434, 2140606, 3088874, 4445440, 6370142, 9095564, 12941289, 18350398, 25930984
Offset: 1
First few rows of the array =
1,...1,...1,...1,...1,...
1,...1,...3,...3,...5,...
1,...1,...3,...6,...8,...
1,...1,...3,...6,..12,...
1,...1,...3,...6,..12,...
...tending to A162506: (1, 1, 3, 6, 12, 23, 42, 77, 132,...)
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-1)*i, j=1..n/i)))
end:
a:= n-> b(n-1, n-1):
seq(a(n), n=1..50); # Alois P. Heinz, Feb 26 2013
-
nmax = 50; Rest[CoefficientList[Series[x*Product[1+k*x^k/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 08 2016 *)
A267004
Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - x^k)).
Original entry on oeis.org
1, 2, 5, 12, 24, 50, 97, 184, 331, 606, 1061, 1834, 3125, 5228, 8673, 14250, 23034, 36894, 58750, 92298, 144398, 223994, 344916, 527116, 801295, 1209870, 1816539, 2713956, 4033169, 5961700, 8775236, 12852444, 18742153, 27225316, 39371647, 56743200, 81467211
Offset: 0
-
nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A267008
Expansion of Product_{k>=1} (1 + (k+1)*x^k).
Original entry on oeis.org
1, 2, 3, 10, 13, 28, 58, 90, 146, 260, 481, 688, 1168, 1748, 2863, 4726, 6938, 10412, 16140, 23746, 35702, 55812, 79032, 116758, 168779, 247006, 350310, 513410, 744286, 1045466, 1485685, 2098780, 2935416, 4137878, 5746618, 8027612, 11343706, 15487222, 21418682
Offset: 0
-
b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
seq(a(n), n=0..42); # Alois P. Heinz, Aug 15 2019
-
nmax = 50; CoefficientList[Series[Product[1+(k+1)*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; Do[Do[poly[[j+1]] += (k+1)*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly
A319110
Expansion of Product_{k>=1} 1/(1 - (k - 1)*x^k).
Original entry on oeis.org
1, 0, 1, 2, 4, 6, 13, 18, 37, 56, 101, 152, 285, 410, 713, 1118, 1830, 2780, 4618, 6934, 11278, 17092, 26894, 40822, 64435, 96372, 149299, 225104, 345131, 515394, 788176, 1169962, 1772957, 2632458, 3950365, 5849260, 8748993, 12867848, 19135894, 28126614, 41598695
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1,
0^n, b(n, i-1)+(i-1)*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..42); # Alois P. Heinz, Aug 19 2019
-
nmax = 40; CoefficientList[Series[Product[1/(1 - (k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Exp[Sum[Sum[(j - 1)^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (d - 1)^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]
Showing 1-4 of 4 results.
Comments