cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A324990 a(n) = the smallest number k such that floor(sigma(k)/tau(k)) = n, or 0 if no such number k exists.

Original entry on oeis.org

1, 3, 5, 7, 0, 11, 13, 21, 17, 19, 40, 23, 34, 39, 29, 31, 63, 46, 37, 57, 41, 43, 76, 47, 0, 99, 53, 74, 0, 59, 61, 93, 86, 67, 116, 71, 73, 111, 125, 79, 175, 83, 171, 121, 89, 122, 0, 141, 97, 0, 101, 103, 0, 107, 109, 188, 113, 250, 0, 158, 169, 183, 166
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2019

Keywords

Comments

Floor(sigma(n)/tau(n)) = floor(A000203(n)/A000005(n)) = A057022(n) for n >= 1.
Odd primes are terms.
a(n) = 0 for numbers n = 5, 25, 29, 47, 50, 53, 59, 83, 89, ...

Examples

			For n = 4; number 7 is the smallest number k with floor(sigma(k)/tau(k)) = 4; floor(sigma(7)/tau(7)) = floor(8/2) = 4.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in[1..80]]
  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for k from 1 to N^2 do
      v:= floor(numtheory:-sigma(k)/numtheory:-tau(k));
      if v <= N and V[v]=0 then V[v]:= k fi
    od:
    convert(V,list); # Robert Israel, Sep 13 2020

A324991 a(n) = the largest number k such that floor(sigma(k)/tau(k)) = n, or 0 if no such number k exists.

Original entry on oeis.org

2, 4, 8, 12, 0, 18, 24, 21, 30, 36, 40, 48, 45, 60, 56, 72, 63, 84, 90, 75, 96, 120, 108, 112, 0, 144, 110, 140, 0, 180, 160, 156, 136, 67, 116, 210, 240, 200, 198, 252, 175, 224, 208, 225, 288, 228, 0, 360, 336, 0, 172, 315, 0, 330, 272, 420, 294, 306, 0, 396
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2019

Keywords

Comments

Floor(sigma(n)/tau(n)) = floor(A000203(n)/A000005(n)) = A057022(n) for n >= 1.
a(n) = 0 for numbers n = 5, 25, 29, 47, 50, 53, 59, 83, 89, ...

Examples

			For n = 4; number 12 is the largest number k with floor(sigma(k)/tau(k)) = 4; floor(sigma(12)/tau(12)) = floor(28/6) = 4.
		

Crossrefs

Programs

  • Magma
    [Max([n: n in[1..10^5] | Floor(SumOfDivisors(n)/ NumberOfDivisors(n)) eq k]): k in [1..4]] cat [0] cat [Max([n: n in[1..10^5] | Floor(SumOfDivisors(n)/ NumberOfDivisors(n)) eq k]): k in [6..24]];

A327054 a(n) is the smallest number m such that the antiharmonic mean of the divisors is n, or 0 if no such m exists.

Original entry on oeis.org

1, 0, 4, 0, 0, 0, 9, 0, 0, 0, 16, 0, 20, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jaroslav Krizek, Oct 06 2019

Keywords

Comments

a(n) = the smallest number m such that sigma_2(n) / sigma_1(n) = A001157(m) / A000203(m) = n, or 0 if no such m exists.
Zeros occur if n is not in A176799.
See A000290, A091911 and A162538 for like sequences for geometric, arithmetic and harmonic means of the divisors.

Examples

			a(3) = 4 because 4 is the smallest number m with sigma_2(m) / sigma_1(m) = 3; sigma_2(4) / sigma_1(4) = 21 / 7 = 3.
		

Crossrefs

Programs

  • Magma
    A327054:=func; [A327054(n): n in[1..100]];
  • Maple
    # This uses the b-file for A004394
    # See comment at A176799
    K:= 100: # to get terms <= K
    M:= 36 * K^2/Pi^4:
    for i from 1 while A004394[i] < M do od:
    r:= numtheory:-sigma(A004394[i])/A004394[i]:
    V:= Vector(K):
    for m from 1 to r*K do
      F:= numtheory:-divisors(m);
      v:= add(d^2, d=F)/add(d, d=F);
      if v::integer and v <= K and V[v] = 0 then V[v]:= m fi;
    od:
    convert(V,list); # Robert Israel, Sep 05 2024

A355848 Irregular triangle read by rows in which row n lists the numbers whose divisors have arithmetic mean n, or 0 if no such number exists.

Original entry on oeis.org

1, 3, 5, 6, 7, 0, 11, 14, 15, 13, 20, 21, 17, 22, 30, 19, 27, 0, 23, 33, 35, 42, 45, 39, 44, 60, 29, 38, 54, 56, 31, 0, 46, 51, 55, 66, 70, 37, 49, 57, 41, 65, 68, 78, 96, 43, 0, 47, 62, 69, 77, 105, 0, 99, 126, 53, 85, 102, 110, 91, 92, 132, 140, 0, 59, 87, 95, 114, 135, 168
Offset: 1

Views

Author

Mohammed Yaseen, Jul 20 2022

Keywords

Examples

			Triangle begins:
  n=1: 1;
  n=2: 3;
  n=3: 5, 6;
  n=4: 7;
  n=5: 0;
  n=6: 11, 14, 15;
  n=7: 13, 20;
  n=8: 21;
  n=9: 17, 22, 30;
  ...
		

Crossrefs

Cf. A162538 (left border).

Programs

  • Mathematica
    nmax=30; a={}; For[n=1, n<=nmax, n++, nok=0; For[k=1, k<=n(n+1)/2, k++, If[DivisorSum[k,#&]==n*DivisorSigma[0,k], AppendTo[a,k]; nok=1]]; If[nok==0, AppendTo[a,0]]]; a (* Stefano Spezia, Jul 20 2022 *)
Showing 1-4 of 4 results.