cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162540 a(n) = (2*n+1)*(2*n+3)*(2*n+5)/3.

Original entry on oeis.org

5, 35, 105, 231, 429, 715, 1105, 1615, 2261, 3059, 4025, 5175, 6525, 8091, 9889, 11935, 14245, 16835, 19721, 22919, 26445, 30315, 34545, 39151, 44149, 49555, 55385, 61655, 68381, 75579, 83265, 91455, 100165, 109411, 119209, 129575, 140525, 152075, 164241
Offset: 0

Views

Author

Jacob Landon (jacoblandon(AT)aol.com), Jul 05 2009

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)*(2*n+3)*(2*n+5)/3: n in [0..40]]; // Vincenzo Librandi, Nov 16 2011
    
  • Maple
    A162540:=n->(2*n+1)*(2*n+3)*(2*n+5)/3: seq(A162540(n), n=0..80); # Wesley Ivan Hurt, May 28 2016
  • Mathematica
    Table[((2n+1)(2n+3)(2n+5))/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{5,35,105,231},40] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    Vec((5+15*x-5*x^2+x^3)/(x-1)^4 + O(x^100)) \\ Altug Alkan, Oct 26 2015

Formula

a(n) = A061550(n)/3 = A077415(2*n+3).
From R. J. Mathar, Jul 16 2009: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: (5 + 15*x - 5*x^2 + x^3)/(x-1)^4. (End)
a(n) = 5*Pochhammer(7/2,n)/Pochhammer(1/2,n). Hence e.g.f. is 5* 1F1(7/2;1/2;x), with 1F1 being the confluent hypergemetric function (also known as Kummer's). - Stanislav Sykora, May 26 2016
E.g.f.: (8*x^3 + 60*x^2 + 90*x + 15)*exp(x)/3. - Robert Israel, May 27 2016
From Amiram Eldar, Jan 09 2021: (Start)
Sum_{n>=0} 1/a(n) = 1/4.
Sum_{n>=0} (-1)^n/a(n) = 3*Pi/8 - 1 = A093828 - 1. (End)

Extensions

Offset corrected, definition clarified by R. J. Mathar, Jul 16 2009