A162559 a(n) = ((4+sqrt(3))*(1+sqrt(3))^n + (4-sqrt(3))*(1-sqrt(3))^n)/2.
4, 7, 22, 58, 160, 436, 1192, 3256, 8896, 24304, 66400, 181408, 495616, 1354048, 3699328, 10106752, 27612160, 75437824, 206099968, 563075584, 1538351104, 4202853376, 11482408960, 31370524672, 85705867264, 234152783872, 639717302272, 1747740172288, 4774914949120
Offset: 0
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (2,2).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-3); S:=[ ((4+r)*(1+r)^n+(4-r)*(1-r)^n)/2: n in [0..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 13 2009 -
Maple
seq((1/2)*simplify((4+sqrt(3))*(1+sqrt(3))^n+(4-sqrt(3))*(1-sqrt(3))^n), n = 0 .. 27); # Emeric Deutsch, Jul 16 2009
-
Mathematica
LinearRecurrence[{2,2},{4,7},30] (* Harvey P. Dale, Sep 21 2018 *)
Formula
a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0) = 4, a(1) = 7.
G.f.: (4-x)/(1-2*x-2*x^2).
Extensions
Edited by Klaus Brockhaus, Paolo P. Lava and Emeric Deutsch, Jul 13 2009
Two different extensions were received. This version was rechecked by N. J. A. Sloane, Jul 19 2009
Comments