cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162559 a(n) = ((4+sqrt(3))*(1+sqrt(3))^n + (4-sqrt(3))*(1-sqrt(3))^n)/2.

Original entry on oeis.org

4, 7, 22, 58, 160, 436, 1192, 3256, 8896, 24304, 66400, 181408, 495616, 1354048, 3699328, 10106752, 27612160, 75437824, 206099968, 563075584, 1538351104, 4202853376, 11482408960, 31370524672, 85705867264, 234152783872, 639717302272, 1747740172288, 4774914949120
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009

Keywords

Comments

Binomial transform of A162766. Inverse binomial transform of A077236.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((4+r)*(1+r)^n+(4-r)*(1-r)^n)/2: n in [0..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 13 2009
  • Maple
    seq((1/2)*simplify((4+sqrt(3))*(1+sqrt(3))^n+(4-sqrt(3))*(1-sqrt(3))^n), n = 0 .. 27); # Emeric Deutsch, Jul 16 2009
  • Mathematica
    LinearRecurrence[{2,2},{4,7},30] (* Harvey P. Dale, Sep 21 2018 *)

Formula

a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0) = 4, a(1) = 7.
G.f.: (4-x)/(1-2*x-2*x^2).

Extensions

Edited by Klaus Brockhaus, Paolo P. Lava and Emeric Deutsch, Jul 13 2009
Two different extensions were received. This version was rechecked by N. J. A. Sloane, Jul 19 2009