A162578 Partial sums of A002322.
1, 2, 4, 6, 10, 12, 18, 20, 26, 30, 40, 42, 54, 60, 64, 68, 84, 90, 108, 112, 118, 128, 150, 152, 172, 184, 202, 208, 236, 240, 270, 278, 288, 304, 316, 322, 358, 376, 388, 392, 432, 438, 480, 490, 502, 524, 570, 574, 616, 636, 652, 664, 716, 734, 754, 760, 778
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Paul Erdős, Carl Pomerance, and Eric Schmutz, Carmichael's lambda function, Acta Arithmetica, Vol. 58, No. 4 (1991), pp. 363-385; alternative link.
Programs
-
Maple
read("transforms3") ; a002322 := BFILETOLIST("b002322.txt") : A162578 :=proc(n) global a002322 ; local i; add(op(i,a002322),i=1..n) ; end: seq(A162578(n),n=1..120) ; # R. J. Mathar, Jul 16 2009
-
Mathematica
Accumulate[CarmichaelLambda[Range[60]]] (* Harvey P. Dale, Sep 21 2011 *)
-
PARI
a(n) = sum(i=1, n, lcm(znstar(i)[2])) \\ Felix Fröhlich, Jul 04 2018
Formula
a(n) = Sum_{k=1..n} A002322(k).
a(n) = (n^2/log(n)) * exp(B * (log(log(n))/log(log(log(n)))) * (1 + o(1))), where B = A218342 (Erdős et al., 1991). - Amiram Eldar, Dec 27 2022
Extensions
a(13) corrected and more terms added by R. J. Mathar, Jul 16 2009