cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A162581 G.f.: A(x) = exp( 2*Sum_{n>=1} A006519(n)^2 * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 6, 10, 26, 42, 86, 130, 258, 386, 694, 1002, 1754, 2506, 4134, 5762, 9346, 12930, 20198, 27466, 42330, 57194, 85750, 114306, 169602, 224898, 326934, 428970, 618138, 807306, 1144390, 1481474, 2084610, 2687746, 3732422, 4777098, 6591386
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 26*x^4 + 42*x^5 + 86*x^6 + ...
log(A(x))/2 = 2^0*x + 2^2*x^2 + 2^0*x^3/3 + 2^4*x^4/4 + 2^0*x^5/5 + 2^2*x^6/6 + 2^0*x^7/7 + 2^6*x^8/8 + ... + A006519(n)^2*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 200; a[n_]:= SeriesCoefficient[Series[Exp[ Sum[2^(2*IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2*(2^valuation(m,2))^2*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A162582 G.f.: A(x) = exp( 2*Sum_{n>=1} A006519(n)^n * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 6, 10, 146, 282, 826, 1370, 4204986, 8408602, 25223066, 42037530, 615687706, 1189337882, 3483938586, 5778539290, 2305851850537847066, 4611703695297154842, 13835111074334385946, 23058518453371617050
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 146*x^4 + 282*x^5 + 826*x^6 + ...
log(A(x))/2 = 2^0*x + 2^2*x^2 + 2^0*x^3/3 + 2^8*x^4/4 + 2^0*x^5/5 + 2^6*x^6/6 + 2^0*x^7/7 + 2^24*x^8/8 + ... + A006519(n)^n*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 200; a[n_]:= SeriesCoefficient[Series[Exp[ Sum[2^(k*IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2*(2^valuation(m,2))^m*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}
Showing 1-2 of 2 results.