cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A162580 G.f.: A(x) = exp( 2*Sum_{n>=1} 2^[A007814(n)^2] * x^n/n ), where A007814(n) = exponent of highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 4, 6, 16, 26, 44, 62, 240, 418, 756, 1094, 2544, 3994, 6556, 9118, 32352, 55586, 99492, 143398, 330000, 516602, 845900, 1175198, 3452112, 5729026, 9953556, 14178086, 31076592, 47975098, 77547580, 107120062, 298608832, 490097602
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 6*x^3 + 16*x^4 + 26*x^5 + 44*x^6 + ...
log(A(x))/2 = 2^0*x + 2^1*x^2 + 2^0*x^3/3 + 2^4*x^4/4 + 2^0*x^5/5 + 2^1*x^6/6 + 2^0*x^7/7 + 2^9*x^8/8 + ... + 2^[A007814(n)^2]*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 500; a[n_]:= SeriesCoefficient[Series[Exp[ Sum[2^(IntegerExponent[k, 2]^2 + 1)*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2*2^(valuation(m,2)^2)*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A162582 G.f.: A(x) = exp( 2*Sum_{n>=1} A006519(n)^n * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 6, 10, 146, 282, 826, 1370, 4204986, 8408602, 25223066, 42037530, 615687706, 1189337882, 3483938586, 5778539290, 2305851850537847066, 4611703695297154842, 13835111074334385946, 23058518453371617050
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 146*x^4 + 282*x^5 + 826*x^6 + ...
log(A(x))/2 = 2^0*x + 2^2*x^2 + 2^0*x^3/3 + 2^8*x^4/4 + 2^0*x^5/5 + 2^6*x^6/6 + 2^0*x^7/7 + 2^24*x^8/8 + ... + A006519(n)^n*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 200; a[n_]:= SeriesCoefficient[Series[Exp[ Sum[2^(k*IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2*(2^valuation(m,2))^m*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A217553 G.f.: exp( Sum_{n>=1} 4^A001511(n) * x^n/n ), where 2^A001511(n) is the highest power of 2 that divides 2*n.

Original entry on oeis.org

1, 4, 16, 44, 128, 308, 752, 1628, 3584, 7268, 14864, 28556, 55296, 102036, 189168, 337084, 603136, 1044676, 1814288, 3064556, 5188352, 8578548, 14205936, 23041308, 37420800, 59680548, 95265552, 149620812, 235161216, 364301652, 564627952, 863725948, 1321756672
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2012

Keywords

Comments

Compare g.f. to the g.f. of binary partitions (A000123):
exp( Sum_{n>=1} 2^A001511(n) * x^n/n ).

Examples

			G.f.: A(x) = 1 + 4*x + 16*x^2 + 44*x^3 + 128*x^4 + 308*x^5 + 752*x^6 +...
where
log(A(x)) = 4^1*x + 4^2*x^2/2 + 4^1*x^3/3 + 4^4*x^4/4 + 4^1*x^5/5 + 4^2*x^6/6 + 4^1*x^7/7 + 4^4*x^8/8 + 4^1*x^9/9 + 4^2*x^10/10 + 4^1*x^11/11 + 4^4*x^12/12 +...+ 4^A001511(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,4^valuation(2*m,2)*x^m/m)+x*O(x^n)),n)}
    for(n=0,31,print1(a(n),", "))

Formula

Self-convolution of A162581.
Showing 1-3 of 3 results.