A162589 G.f.: A(x) = exp( Sum_{n>=1} 2^n*A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.
1, 2, 6, 12, 38, 76, 188, 376, 1094, 2188, 5236, 10472, 26076, 52152, 118840, 237680, 612678, 1225356, 2804420, 5608840, 13279604, 26559208, 59074504, 118149008, 277925148, 555850296, 1228260104, 2456520208, 5552652792, 11105305584
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 6*x^2 + 12*x^3 + 38*x^4 + 76*x^5 + 188*x^6 + ... log(A(x)) = 2*x + 8*x^2/2 + 8*x^3/3 + 64*x^4/4 + 32*x^5/5 + 128*x^6/6 + 128*x^7/7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[2^(k + IntegerExponent[k, 2])*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jul 04 2018 *)
-
PARI
{a(n)=local(L=sum(m=1,n,2^(m+valuation(m,2))*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}