A162622 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^4 - 1.
0, 1, 1, 2, 17, 32, 3, 83, 163, 243, 4, 259, 514, 769, 1024, 5, 629, 1253, 1877, 2501, 3125, 6, 1301, 2596, 3891, 5186, 6481, 7776, 7, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 9, 6569, 13129
Offset: 0
Examples
Triangle begins: 0; 1, 1; 2, 17, 32; 3, 83, 163, 243; 4, 259, 514, 769, 1024; 5, 629, 1253, 1877, 2501, 3125; 6, 1301, 2596, 3891, 5186, 6481, 7776; 7, 2407, 4807, 7207, 9607, 12007, 14407, 16807; 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768; 9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 59049; etc.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
/* Triangle: */ [[n+k*(n^4-1): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Dec 14 2012
-
Maple
A162622 := proc(n,k) n+k*(n^4-1) ; end proc: seq(seq( A162622(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 11 2010
-
Mathematica
Flatten[Table[NestList[#+n^4-1&,n,n],{n,0,9}]] (* Harvey P. Dale, Jun 23 2013 *)
Formula
Sum_{k=0..n} T(n,k) = n*(n+1)*(1+n^4)/2 (row sums). [R. J. Mathar, Jul 20 2009]
Extensions
7th and later rows from R. J. Mathar, Feb 11 2010
Comments