cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162662 Sequence of alternating increasing odd and increasing even numbers such that the sum of any two terms of opposite parity is a prime number.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 27, 70, 57, 100, 267, 1060, 1227, 27790, 1479, 146380, 3459, 2508040, 49527, 35506900, 470079
Offset: 1

Views

Author

Michel Lagneau, Jan 27 2011

Keywords

Comments

a(n+1) is taken to be the smallest number, greater than a(n-2), of opposite parity to a(n) that satisfies the condition.
A000034: Period 2: repeat [1, 2] is another sequence satisfying the definition without the increasing constraint. - Michel Marcus, Dec 22 2014

Examples

			1060 + 267 = 1327 is prime;
1060 + 27 = 1087 is prime;
1060 + 9 = 1069 is prime;
1060 + 3 = 1063 is prime;
1060 + 1 = 1061 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=30:T:=array(1..nn): T[1]:=1:a:=1:for k from 2 to nn do:id:=0:for
      n from k to 1000000 while(id=0) do:n1:=irem(n,2):i:=0:for p from 1 to a do:
      if n=T[p] then i:=0:else fi: x:=n+T[p]:if type(x, prime)=true then i:=i+1:else
      fi:od: if i=ceil(a/2) then T[k]:=n:print(n):a:=a+1:id:=1:else fi:od:od:
  • PARI
    ok(k, m, v) = {if (k % 2, js = 2, js = 1); forstep(j=js, m, 2, if (! isprime(k + v[j]), return (0));); return (1);}
    findval(n, v) = {if (n <=2, k = n, k = v[n-2]+2); while (!ok (k, n-1, v), k+= 2); k;}
    lista(nn) = {a = vector(nn); a[1] = 1; print1(a[1], ", "); for (n=2, nn, a[n] = findval(n, a); print1(a[n], ", "););} \\ Michel Marcus, Dec 22 2014

Extensions

a(18)-a(21) from Michel Marcus, Dec 22 2014
Name clarified by Michel Marcus, Dec 22 2014