A162755 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
1, 9, 72, 540, 4032, 29988, 223020, 1658160, 12328596, 91662732, 681510816, 5067014148, 37673118252, 280098623952, 2082525799284, 15483523651596, 115119584685504, 855911035979748, 6363675682412076, 47313758657548656, 351776531372292180, 2615449111101347724, 19445794254904116960
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (7,7,-28).
Crossrefs
Cf. A003951 (G.f.: (1+x)/(1-8*x)).
Programs
-
Mathematica
Join[{1},LinearRecurrence[{7,7,-28},{9,72,540},50]] (* or *) CoefficientList[ Series[(t^3+2t^2+2t+1)/(28t^3-7t^2-7t+1),{t,0,50}],t] (* Harvey P. Dale, Jun 15 2011 *)
Formula
G.f.: (t^3 + 2*t^2 + 2*t + 1)/(28*t^3 - 7*t^2 - 7*t + 1)
a(0)=1, a(1)=9, a(2)=72, a(3)=540, a(n)=7*a(n-1)+7*a(n-2)-28*a(n-3). - Harvey P. Dale, Jun 15 2011
Comments