cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162851 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 37, 1332, 47286, 1678320, 59557050, 2113447770, 74997827100, 2661373678950, 94441530616650, 3351353019273000, 118926143828399250, 4220214225380039250, 149758560520153357500, 5314333645481777358750, 188584492248078150341250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[37, 1332, 47286];; for n in [4..20] do a[n]:=35*a[n-1]+ 35*a[n-2]-630*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 +2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{35, 35, -630}, {1, 37, 1332}, 20] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 630, -35}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1-36*x+665*x^3-630*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
    

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(630*t^3 - 35*t^2 - 35*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 36*x + 665*x^3 - 630*x^4). - G. C. Greubel, Apr 26 2019
a(n) = 35*a(n-1)+35*a(n-2)-630*a(n-3). - Wesley Ivan Hurt, May 05 2021