cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162882 Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 44, 1892, 80410, 3416952, 145180728, 6168492330, 262088760780, 11135706433236, 473137249574682, 20102798001348216, 854133737629549608, 36290691560131770762, 1541929835910758016492, 65513979388697887768644
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170763, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[44,1892,80410];; for n in [4..20] do a[n]:=42*a[n-1]+42*a[n-2] -903*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(903*x^3-42*x^2-42*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 903, -42}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(903*t^3-42*t^2-42*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -43*x +945*x^3 -903*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(903*t^3 - 42*t^2 - 42*t + 1).
a(n) = 42*a(n-1) + 42*a(n-2) - 903*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 43*x + 945*x^3 - 903*x^4). - G. C. Greubel, Apr 27 2019