cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A162971 Triangle read by rows: T(n,k) is number of non-derangement permutations of {1,2,...,n} having k cycles (1 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 8, 6, 1, 0, 30, 35, 10, 1, 0, 144, 210, 85, 15, 1, 0, 840, 1414, 735, 175, 21, 1, 0, 5760, 10752, 6664, 1960, 322, 28, 1, 0, 45360, 91692, 64764, 22449, 4536, 546, 36, 1, 0, 403200, 869040, 679580, 268380, 63273, 9450, 870, 45, 1, 0, 3991680, 9074736, 7704180, 3382280, 902055, 157773, 18150, 1320, 55, 1
Offset: 1

Views

Author

Emeric Deutsch, Jul 22 2009

Keywords

Comments

Sum of entries in row n = A002467(n) (the number of non-derangement permutations of {1,2,...,n}).
T(n,2) = n*(n-2)! = A001048(n-1) for n>=3.
Sum_{k=1..n} k*T(n,k) = A162972(n).

Examples

			T(4,2) = 8 because we have (1)(234), (1)(243), (134)(2), (143)(2), (124)(3), (142)(3), (123)(4), and (132)(4).
Triangle starts:
  1;
  0,   1;
  0,   3,   1;
  0,   8,   6,   1;
  0,  30,  35,  10,   1;
  0, 144, 210,  85,  15,   1;
  ...
		

Crossrefs

Programs

  • Maple
    G := (1-exp(-t*z))/(1-z)^t: Gser := simplify(series(G, z = 0, 15)): for n to 11 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n=0, t, add(expand((j-1)!*
          b(n-j, `if`(j=1, 1, t))*x)*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Aug 15 2023
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, t, Sum[Expand[(j - 1)!*b[n - j, If[j == 1, 1, t]]*x]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := CoefficientList[b[n, 0]/x, x];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 04 2024, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = (1-exp(-tz))/(1-z)^t.

A162973 Number of cycles in all derangement permutations of {1,2,...,n}.

Original entry on oeis.org

0, 1, 2, 12, 64, 425, 3198, 27216, 258144, 2701737, 30933770, 384675148, 5163521856, 74417353985, 1146203362822, 18790377267840, 326682354342336, 6003886529652657, 116305541572943826, 2368629865508978284
Offset: 1

Views

Author

Emeric Deutsch, Jul 22 2009

Keywords

Examples

			a(4)=12 because in the derangements of {1,2,3,4}, namely (12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), and (1432), we have a total of 2+2+2+1+1+1+1+1+1=12 cycles.
		

Crossrefs

Programs

  • Maple
    G := exp(-z)*(z+ln(1-z))/(z-1): Gser := series(G, z = 0, 25): seq(factorial(n)*coeff(Gser, z, n), n = 1 .. 22);
  • Mathematica
    With[{nn=20},Rest[CoefficientList[Series[Exp[-x] (x+Log[1-x])/(x-1), {x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Jul 25 2013 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(serlaplace(exp(-x)*(x+log(1-x))/(x -1)))) \\ G. C. Greubel, Sep 01 2018

Formula

a(n) = Sum_{k>=1} k*A008306(n,k).
E.g.f.: exp(-z)*(z+log(1-z))/(z-1).
a(n) ~ n! * (log(n) + gamma - 1)/exp(1), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 25 2013
a(n) = A000254(n) - A162972(n). - Anton Zakharov, Oct 18 2016
D-finite with recurrence a(n) +2*(-n+2)*a(n-1) +(n-2)*(n-6)*a(n-2) +(3*n-8)*(n-3)*a(n-3) +3*(n-3)^2*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jul 26 2022
Showing 1-2 of 2 results.