A129817 Number of alternating fixed-point-free permutations on n letters.
1, 0, 1, 1, 2, 6, 24, 102, 528, 2952, 19008, 131112, 1009728, 8271792, 74167488, 703077552, 7194754368, 77437418112, 890643066048, 10726837356672, 136988469649728, 1825110309733632, 25625477737660608, 374159217291201792, 5728724202727533888, 90961591766739121152, 1508303564683904357568, 25874345243221479539712, 461932949559928514787648, 8513674175717969079785472, 162818666826944872460200128
Offset: 0
Keywords
Examples
a(4) = 2 because we have 3142 and 2143. - _Emeric Deutsch_, Aug 06 2009
Links
- R. P. Stanley, Alternating permutations and symmetric functions, arXiv:math/0603520 [math.CO], 2006.
Programs
-
Mathematica
nmax = 30; fo = Exp[e*(ArcTan[q*t] - ArcTan[t])]/(1 - e*t); fe = Sqrt[(1+t^2)/(1+q^2*t^2)]*Exp[e*(ArcTan[q*t] - ArcTan[t])]/(1-e*t); Q[n_] := If [OddQ[n] , SeriesCoefficient[fo, {t, 0, n}], SeriesCoefficient[fe, {t, 0, n}]] // Expand; b[n_] := n!*SeriesCoefficient[Sec[x] + Tan[x], {x, 0, n}]; P[n_] := (Q[n] /. e^k_Integer :> b[k]) /. e :> b[1] // Expand; a[n_] := Coefficient[P[n], q, 0]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, nmax}] (* Jean-François Alcover, Jul 24 2018 *)
Formula
a(n) = A162979(n,0). - Alois P. Heinz, Nov 24 2017
Extensions
a(21) from Alois P. Heinz, Nov 06 2015
a(0)=1 prepended by Alois P. Heinz, Nov 24 2017
a(22)..a(30) from Jean-François Alcover, Jul 24 2018
Comments