A163075 Primes of the form k$ + 1. Here '$' denotes the swinging factorial function (A056040).
2, 3, 7, 31, 71, 631, 3433, 51481, 2704157, 280816201, 4808643121, 35345263801, 2104098963721, 94684453367401, 1580132580471901, 483701705079089804581, 6892620648693261354601, 410795449442059149332177041, 2522283613639104833370312431401
Offset: 1
Keywords
Examples
Since 3$ = 4$ = 6 the prime 7 is listed, however only once.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..50
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Primes.
Programs
-
Maple
a := proc(n) select(isprime, map(x -> A056040(x)+1,[$1..n])) end:
-
Mathematica
Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)
Extensions
More terms from Jinyuan Wang, Mar 22 2020