cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A163074 Swinging primes: primes which are within 1 of a swinging factorial (A056040).

Original entry on oeis.org

2, 3, 5, 7, 19, 29, 31, 71, 139, 251, 631, 3433, 12011, 48619, 51479, 51481, 2704157, 155117519, 280816201, 4808643121, 35345263801, 81676217699, 1378465288199, 2104098963721, 5651707681619, 94684453367401, 386971244197199, 1580132580471899, 1580132580471901
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

Union of A163075 and A163076.

Examples

			3$ + 1 = 7 is prime, so 7 is in the sequence. (Here '$' denotes the swinging factorial function.)
		

Crossrefs

Programs

  • Maple
    # Seq with arguments <= n:
    a := proc(n) select(isprime,map(x -> A056040(x)+1,[$1..n]));
    select(isprime,map(x -> A056040(x)-1,[$1..n]));
    sort(convert(convert(%%,set) union convert(%,set),list)) end:
  • Mathematica
    Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]]; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 45}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)

Extensions

More terms from Jinyuan Wang, Mar 22 2020

A163076 Primes of the form k$ - 1. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

5, 19, 29, 139, 251, 12011, 48619, 51479, 155117519, 81676217699, 1378465288199, 5651707681619, 386971244197199, 1580132580471899, 30067266499541039, 6637553085023755473070799, 35257120210449712895193719, 399608854866744452032002440111
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Examples

			Since 4$ = 6 the prime 5 is listed.
		

Crossrefs

Cf. A055490, A056040, A163078 (arguments k), A163074, A163075.

Programs

  • Maple
    a := proc(n) select(isprime, map(x -> A056040(x)-1,[$1..n])); sort(%) end:
  • Mathematica
    Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)

Extensions

More terms from Jinyuan Wang, Mar 22 2020

A163083 Primes of the form k$ + 1 which are the greater of twin primes. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

7, 31, 51481, 1580132580471901
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

Subsequence of A163075 and of A006512.

Crossrefs

Programs

  • Maple
    a := proc(n) select(s->isprime(s) and isprime(s-2), map(k -> A056040(k)+1,[$4..n])) end:
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; Do[ If[ PrimeQ[p = sf[n] + 1] && PrimeQ[p - 2], Print["n = ", n, " p = ", p]], {n, 1, 400}] (* Jean-François Alcover, Jul 29 2013 *)

A163081 Primes of the form p$ + 1 where p is prime, where '$' denotes the swinging factorial (A056040).

Original entry on oeis.org

3, 7, 31, 4808643121, 483701705079089804581, 3283733939424401442167506310317720418331001
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

The values of p are 2, 3, 5, 31, 67, 139 which is A163079. Subsequence of A163075 (primes of the form k$ + 1).

Examples

			3 and 3$ + 1 = 7 are prime, so 7 is a member.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(isprime,[$2..n]); select(isprime, map(x -> A056040(x)+1,%)) end:
Showing 1-4 of 4 results.