A163075
Primes of the form k$ + 1. Here '$' denotes the swinging factorial function (A056040).
Original entry on oeis.org
2, 3, 7, 31, 71, 631, 3433, 51481, 2704157, 280816201, 4808643121, 35345263801, 2104098963721, 94684453367401, 1580132580471901, 483701705079089804581, 6892620648693261354601, 410795449442059149332177041, 2522283613639104833370312431401
Offset: 1
Since 3$ = 4$ = 6 the prime 7 is listed, however only once.
-
a := proc(n) select(isprime, map(x -> A056040(x)+1,[$1..n])) end:
-
Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)
A163076
Primes of the form k$ - 1. Here '$' denotes the swinging factorial function (A056040).
Original entry on oeis.org
5, 19, 29, 139, 251, 12011, 48619, 51479, 155117519, 81676217699, 1378465288199, 5651707681619, 386971244197199, 1580132580471899, 30067266499541039, 6637553085023755473070799, 35257120210449712895193719, 399608854866744452032002440111
Offset: 1
Since 4$ = 6 the prime 5 is listed.
-
a := proc(n) select(isprime, map(x -> A056040(x)-1,[$1..n])); sort(%) end:
-
Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)
A163081
Primes of the form p$ + 1 where p is prime, where '$' denotes the swinging factorial (A056040).
Original entry on oeis.org
3, 7, 31, 4808643121, 483701705079089804581, 3283733939424401442167506310317720418331001
Offset: 1
3 and 3$ + 1 = 7 are prime, so 7 is a member.
A163082
Primes of the form p$ - 1 where p is prime, where '$' denotes the swinging factorial (A056040).
Original entry on oeis.org
5, 29, 139, 12011, 5651707681619, 386971244197199, 35257120210449712895193719, 815027488562171580969632861193966578650499
Offset: 1
3 and 3$ - 1 = 5 are prime, so 5 is a member.
Showing 1-4 of 4 results.
Comments