cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163074 Swinging primes: primes which are within 1 of a swinging factorial (A056040).

Original entry on oeis.org

2, 3, 5, 7, 19, 29, 31, 71, 139, 251, 631, 3433, 12011, 48619, 51479, 51481, 2704157, 155117519, 280816201, 4808643121, 35345263801, 81676217699, 1378465288199, 2104098963721, 5651707681619, 94684453367401, 386971244197199, 1580132580471899, 1580132580471901
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

Union of A163075 and A163076.

Examples

			3$ + 1 = 7 is prime, so 7 is in the sequence. (Here '$' denotes the swinging factorial function.)
		

Crossrefs

Programs

  • Maple
    # Seq with arguments <= n:
    a := proc(n) select(isprime,map(x -> A056040(x)+1,[$1..n]));
    select(isprime,map(x -> A056040(x)-1,[$1..n]));
    sort(convert(convert(%%,set) union convert(%,set),list)) end:
  • Mathematica
    Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]]; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 45}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)

Extensions

More terms from Jinyuan Wang, Mar 22 2020

A163075 Primes of the form k$ + 1. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

2, 3, 7, 31, 71, 631, 3433, 51481, 2704157, 280816201, 4808643121, 35345263801, 2104098963721, 94684453367401, 1580132580471901, 483701705079089804581, 6892620648693261354601, 410795449442059149332177041, 2522283613639104833370312431401
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Examples

			Since 3$ = 4$ = 6 the prime 7 is listed, however only once.
		

Crossrefs

Cf. A056040, A088332, A163077 (arguments k), A163074, A163076.

Programs

  • Maple
    a := proc(n) select(isprime, map(x -> A056040(x)+1,[$1..n])) end:
  • Mathematica
    Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)

Extensions

More terms from Jinyuan Wang, Mar 22 2020

A163082 Primes of the form p$ - 1 where p is prime, where '$' denotes the swinging factorial (A056040).

Original entry on oeis.org

5, 29, 139, 12011, 5651707681619, 386971244197199, 35257120210449712895193719, 815027488562171580969632861193966578650499
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

The first values of p are 3, 5, 7, 13, 41 from A163080. Subsequence of A163076 (primes of the form k$ - 1).

Examples

			3 and 3$ - 1 = 5 are prime, so 5 is a member.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(isprime,[$2..n]); select(isprime, map(x -> A056040(x)-1,%)) end:
Showing 1-3 of 3 results.