A163150
Primes of the form A000041(p)+p, where p is some prime.
Original entry on oeis.org
67, 509, 45060624733, 21424521360255636739, 404577789549846859589538794509144411672022828773, 22138618005861522471365237940368652982888104077311
Offset: 1
With p=11=A000040(5) = A163151(1), a(1)= A000041(11)+11 = 67 is prime.
-
f[n_]:=PartitionsP[n]+n; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, f[p]]],{n,6!}];lst
Removed Mathematica specific language in the definition -
R. J. Mathar, Sep 11 2009
A163152
Primes of the form PartitionsP[p], p are prime numbers.
Original entry on oeis.org
2, 3, 7, 101, 80630964769, 1394313503224447816939, 87674799670795146675673859587, 62607220478448273296879161314388228250413, 79074320470247928120049519839632230336234433216761019, 77355497906663686399579348109210219558359416885618588905259034616641337958059
Offset: 1
-
f[n_]:=PartitionsP[n]; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,f[p]]],{n,6!}];lst
Select[PartitionsP[Prime[Range[1000]]],PrimeQ] (* Harvey P. Dale, May 16 2020 *)
-
forprime(p=2,1e4,k=numbpart(p);if(isprime(k),print1(k",")))
A163153
Primes of the form A000009(q)+q, where q are also prime numbers.
Original entry on oeis.org
3, 5, 23, 31, 73, 127, 797, 1301, 9851, 40099, 345953, 570181, 281138239, 48626519377, 91840127431010423, 130050574409983361, 6162297935619708167, 604490895403729930283, 3819342674540204978827, 20395819231612037821523
Offset: 1
-
f[n_]:=PartitionsQ[n]+n; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, f[p]]],{n,6!}];lst
Select[Table[PartitionsQ[n]+n,{n,Prime[Range[300]]}],PrimeQ] (* Harvey P. Dale, Jun 02 2014 *)
Showing 1-3 of 3 results.
Comments