cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163150 Primes of the form A000041(p)+p, where p is some prime.

Original entry on oeis.org

67, 509, 45060624733, 21424521360255636739, 404577789549846859589538794509144411672022828773, 22138618005861522471365237940368652982888104077311
Offset: 1

Views

Author

Keywords

Examples

			With p=11=A000040(5) = A163151(1), a(1)= A000041(11)+11 = 67 is prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=PartitionsP[n]+n; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, f[p]]],{n,6!}];lst

Formula

a(n) = A000041(A163151(n))+A163151(n).

Extensions

Removed Mathematica specific language in the definition - R. J. Mathar, Sep 11 2009

A163152 Primes of the form PartitionsP[p], p are prime numbers.

Original entry on oeis.org

2, 3, 7, 101, 80630964769, 1394313503224447816939, 87674799670795146675673859587, 62607220478448273296879161314388228250413, 79074320470247928120049519839632230336234433216761019, 77355497906663686399579348109210219558359416885618588905259034616641337958059
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=PartitionsP[n]; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,f[p]]],{n,6!}];lst
    Select[PartitionsP[Prime[Range[1000]]],PrimeQ] (* Harvey P. Dale, May 16 2020 *)
  • PARI
    forprime(p=2,1e4,k=numbpart(p);if(isprime(k),print1(k",")))

Extensions

Program by Charles R Greathouse IV, Oct 12 2009
More terms from Harvey P. Dale, May 16 2020

A163153 Primes of the form A000009(q)+q, where q are also prime numbers.

Original entry on oeis.org

3, 5, 23, 31, 73, 127, 797, 1301, 9851, 40099, 345953, 570181, 281138239, 48626519377, 91840127431010423, 130050574409983361, 6162297935619708167, 604490895403729930283, 3819342674540204978827, 20395819231612037821523
Offset: 1

Views

Author

Keywords

Comments

A subset of A121558.
Generated by positions q= 2, 3, 11, 13, 19, 23, 37, 41, 59, 73, 97..

Crossrefs

Programs

  • Mathematica
    f[n_]:=PartitionsQ[n]+n; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, f[p]]],{n,6!}];lst
    Select[Table[PartitionsQ[n]+n,{n,Prime[Range[300]]}],PrimeQ] (* Harvey P. Dale, Jun 02 2014 *)

Extensions

Edited by R. J. Mathar, Jul 25 2009
Showing 1-3 of 3 results.