cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163151 Primes p such that A000041(p)+p are also prime numbers.

Original entry on oeis.org

11, 19, 151, 419, 2161, 2311, 2539, 4831, 5563, 6961, 8363, 9007, 9661, 12347, 20533, 21493, 31033, 45737, 45817, 46919, 49363, 59419, 60017, 82883, 86561, 93491, 99709, 104231, 105499, 113381, 125471
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=PartitionsP[n]+n; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, p]],{n,6!}];lst

Formula

A000041(a(n)) + a(n) = A163150(n).

Extensions

Removed Mathematica specific language in the definition - R. J. Mathar, Sep 11 2009
Extended by D. S. McNeil, Dec 05 2010

A163152 Primes of the form PartitionsP[p], p are prime numbers.

Original entry on oeis.org

2, 3, 7, 101, 80630964769, 1394313503224447816939, 87674799670795146675673859587, 62607220478448273296879161314388228250413, 79074320470247928120049519839632230336234433216761019, 77355497906663686399579348109210219558359416885618588905259034616641337958059
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=PartitionsP[n]; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,f[p]]],{n,6!}];lst
    Select[PartitionsP[Prime[Range[1000]]],PrimeQ] (* Harvey P. Dale, May 16 2020 *)
  • PARI
    forprime(p=2,1e4,k=numbpart(p);if(isprime(k),print1(k",")))

Extensions

Program by Charles R Greathouse IV, Oct 12 2009
More terms from Harvey P. Dale, May 16 2020

A163153 Primes of the form A000009(q)+q, where q are also prime numbers.

Original entry on oeis.org

3, 5, 23, 31, 73, 127, 797, 1301, 9851, 40099, 345953, 570181, 281138239, 48626519377, 91840127431010423, 130050574409983361, 6162297935619708167, 604490895403729930283, 3819342674540204978827, 20395819231612037821523
Offset: 1

Views

Author

Keywords

Comments

A subset of A121558.
Generated by positions q= 2, 3, 11, 13, 19, 23, 37, 41, 59, 73, 97..

Crossrefs

Programs

  • Mathematica
    f[n_]:=PartitionsQ[n]+n; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, f[p]]],{n,6!}];lst
    Select[Table[PartitionsQ[n]+n,{n,Prime[Range[300]]}],PrimeQ] (* Harvey P. Dale, Jun 02 2014 *)

Extensions

Edited by R. J. Mathar, Jul 25 2009
Showing 1-3 of 3 results.