A163198
Sum of the cubes of the first n even-indexed Fibonacci numbers.
Original entry on oeis.org
0, 1, 28, 540, 9801, 176176, 3162160, 56744793, 1018249596, 18271762300, 327873509425, 5883451505856, 105574253853888, 1894453118539345, 33994581881622076, 610008020755286076, 10946149791725643705, 196420688230338021808, 3524626238354441796016, 63246851602149831726825
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equations (3), (46), (47), and (49).
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
- K. Subba Rao, Some properties of Fibonacci numbers, Amer. Math. Monthly, 60(10):680-684, Dec. 1953. See page 682.
- Index entries for linear recurrences with constant coefficients, signature (22,-77,77,-22,1).
-
a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k]^3, {k, 1, n} ], -Sum[ Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
LinearRecurrence[{22, -77, 77, -22, 1}, {0, 1, 28, 540, 9801}, 50] (* G. C. Greubel, Dec 09 2016 *)
Accumulate[Fibonacci[Range[0,40,2]]^3] (* Harvey P. Dale, Nov 15 2023 *)
-
a(n) = sum(k=1, n, fibonacci(2*k)^3); \\ Michel Marcus, Feb 29 2016
-
concat([0], Vec(x*(1 + 6*x + x^2)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 09 2016
Melham and Ozeki references from
Wolfdieter Lang, Aug 10 2012. Also Prodinger reference added, Oct 11 2012.
A163194
a(n) = F(n)^2 * L(n+1)^2 * F(n-1) * L(n+2), where F(n) and L(n) are the Fibonacci and Lucas numbers, respectively.
Original entry on oeis.org
0, 0, 112, 2156, 39204, 704700, 12648640, 226979168, 4072998384, 73087049196, 1311494037700, 23533806023420, 422297015415552, 7577812474157376, 135978327526488304, 2440032083021144300, 43784599166902574820, 785682752921352087228, 14098504953417767184064, 252987406408599326907296
Offset: 0
G.f. = 112*x^2 + 2156*x^3 + 39204*x^4 + 704700*x^5 + 12648640*x^6 + ...
- Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equation (3).
-
[(Fibonacci(n)*Lucas(n+1))^2*(Fibonacci(n-1)*Lucas(n+2)): n in [0..30]]; // G. C. Greubel, Dec 21 2017
-
a[n_Integer] := Fibonacci[n]^2 LucasL[n+1]^2 Fibonacci[n-1] LucasL[n+2]
LinearRecurrence[{20, -35, -35, 20, -1}, {0, 0, 112, 2156, 39204}, 50] (* or *) Table[(1/5)*(Fibonacci[6n+3] - 12*Fibonacci[2n+1] + 10*(-1)^n), {n,0,25}] (* G. C. Greubel, Dec 09 2016 *)
-
for(n=0,30, print1((1/5)*(fibonacci(6*n+3) - 12*fibonacci(2*n+1) + 10*(-1)^n), ", ")) \\ G. C. Greubel, Dec 21 2017
A163195
a(n) = (1/4)*F(n)^2 * L(n+1)^2 * F(n-1) * L(n+2), where F(n) and L(n) are the Fibonacci and Lucas numbers, respectively.
Original entry on oeis.org
0, 0, 28, 539, 9801, 176175, 3162160, 56744792, 1018249596, 18271762299, 327873509425, 5883451505855, 105574253853888, 1894453118539344, 33994581881622076, 610008020755286075, 10946149791725643705, 196420688230338021807, 3524626238354441796016, 63246851602149831726824
Offset: 0
- Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equation (3).
-
[(1/4)*(Fibonacci(n)*Lucas(n+1))^2*(Fibonacci(n-1)*Lucas(n+2)): n in [0..30]]; // G. C. Greubel, Dec 21 2017
-
a[n_Integer] := (1/4)*Fibonacci[n]^2 * LucasL[n+1]^2 * Fibonacci[n-1] * LucasL[n+2]
LinearRecurrence[{20,-35,-35,20,-1}, {0,0,28,539,9801}, 50] (* or *) Table[(Fibonacci[6n+3] - 12*Fibonacci[2n+1] + 10*(-1)^n)/20, {n,1,25}] (* G. C. Greubel, Dec 09 2016 *)
-
for(n=0,30, print1((fibonacci(6*n+3) - 12*fibonacci(2*n+1) + 10*(-1)^n)/20, ", ")) \\ G. C. Greubel, Dec 21 2017
A163196
a(n) = L(n)^2 * F(n+1)^2 * L(n-1) * F(n+2), where F(n) and L(n) are the Fibonacci and Lucas numbers, respectively.
Original entry on oeis.org
-4, 4, 108, 2160, 39200, 704704, 12648636, 226979172, 4072998380, 73087049200, 1311494037696, 23533806023424, 422297015415548, 7577812474157380, 135978327526488300, 2440032083021144304, 43784599166902574816, 785682752921352087232, 14098504953417767184060, 252987406408599326907300
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equation (3).
- Index entries for linear recurrences with constant coefficients, signature (20,-35,-35,20,-1).
-
[(Lucas(n)*Fibonacci(n+1))^2*(Lucas(n-1)*Fibonacci(n+2)): n in [0..30]]; // G. C. Greubel, Dec 21 2017
-
a[n_Integer] := LucasL[n]^2*Fibonacci[n+1]^2*LucasL[n-1] *Fibonacci[n+2]
LinearRecurrence[{20, -35, -35, 20, -1}, {-4, 4, 108, 2160, 39200}, 50] (* or *) Table[(1/5)*(Fibonacci[6*n+3] - 12*Fibonacci[2*n+1] - 10*(-1)^n),{n,0,25}] (* G. C. Greubel, Dec 09 2016 *)
-
Vec( -4*(1 - 21*x + 28*x^2)/((1 + x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)) + O(x^50)) \\ G. C. Greubel, Dec 09 2016
-
for(n=0, 30, print1((1/5)*(fibonacci(6*n+3) - 12*fibonacci(2*n+1) - 10*(-1)^n), ", ")) \\ G. C. Greubel, Dec 21 2017
A163199
Sum of the cubes of the first n even-indexed Fibonacci numbers, minus 1.
Original entry on oeis.org
-1, 0, 27, 539, 9800, 176175, 3162159, 56744792, 1018249595, 18271762299, 327873509424, 5883451505855, 105574253853887, 1894453118539344, 33994581881622075, 610008020755286075, 10946149791725643704, 196420688230338021807, 3524626238354441796015, 63246851602149831726824
Offset: 0
-
a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k]^3, {k, 1, n} ] - 1, -Sum[ Fibonacci[-2k]^3, {k, 1, -n - 1} ] - 1 ]
Accumulate[Fibonacci[Range[0,40,2]]^3]-1 (* Harvey P. Dale, Jan 03 2016 *)
LinearRecurrence[{22,-77,77,-22,1},{-1,0,27,539,9800},50] (* or *) Table[(1/20)*(F(6n+3) - 12*F(2n+1) - 10),{n,0,25}] (* G. C. Greubel, Dec 09 2016 *)
-
Vec(-(1 - 22*x + 50*x^2 - 22*x^3 + x^4)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50)) \\ G. C. Greubel, Dec 09 2016
Showing 1-5 of 5 results.
Comments