cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163198 Sum of the cubes of the first n even-indexed Fibonacci numbers.

Original entry on oeis.org

0, 1, 28, 540, 9801, 176176, 3162160, 56744793, 1018249596, 18271762300, 327873509425, 5883451505856, 105574253853888, 1894453118539345, 33994581881622076, 610008020755286076, 10946149791725643705, 196420688230338021808, 3524626238354441796016, 63246851602149831726825
Offset: 0

Views

Author

Stuart Clary, Jul 24 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 9801, 540, 28, 1, 0, [0], 1, 28, 540, 9801, 176176, ... This is A163198-reversed followed by A163198. That is, A163198(-n) = A163198(n-1).

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k]^3, {k, 1, n} ], -Sum[ Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
    LinearRecurrence[{22, -77, 77, -22, 1}, {0, 1, 28, 540, 9801}, 50] (* G. C. Greubel, Dec 09 2016 *)
    Accumulate[Fibonacci[Range[0,40,2]]^3] (* Harvey P. Dale, Nov 15 2023 *)
  • PARI
    a(n) = sum(k=1, n, fibonacci(2*k)^3); \\ Michel Marcus, Feb 29 2016
    
  • PARI
    concat([0], Vec(x*(1 + 6*x + x^2)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 09 2016

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = Sum_{k=1..n} F(2k)^3.
a(n) = A163199(n) + 1.
a(n) = (1/20)*(F(6n+3) - 12*F(2n+1) + 10).
a(n) = (1/4)*(F(2n+1)^3 - 3*F(2n+1) + 2). (K. Subba Rao)
a(n) = (1/4)*F(n)^2*L(n+1)^2*F(n-1)*L(n+2) = A163195(n) if n is even.
a(n) = (1/4)*L(n)^2*F(n+1)^2*L(n-1)*F(n+2) = A163197(n) if n is odd.
a(n) - 21 a(n-1) + 56 a(n-2) - 21 a(n-3) + a(n-4) = 8.
a(n) - 22 a(n-1) + 77 a(n-2) - 77 a(n-3) + 22 a(n-4) - a(n-5) = 0.
G.f.: (x + 6*x^2 + x^3)/(1 - 22*x + 77*x^2 - 77*x^3 + 22*x^4 - x^5) = x*(1 + 6*x + x^2)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)).
a(n) = (F(2*n+1)-1)^2*(F(2*n+1) + 2)/4, n>=0. See the Melham reference for a general conjecture. - Wolfdieter Lang, Aug 10 2012

Extensions

Melham and Ozeki references from Wolfdieter Lang, Aug 10 2012. Also Prodinger reference added, Oct 11 2012.