cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163217 Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 34, 1122, 37026, 1221297, 40284288, 1328771136, 43829305344, 1445702699760, 47686274735616, 1572924224543232, 51882656590093824, 1711341215834452224, 56448319139710451712, 1861938872397761101824, 61415759005426222645248
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170753, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • GAP
    a:=[34,1122,37026,1221297];; for n in [5..20] do a[n]:=32*(a[n-1]+ a[n-2]+a[n-3]) -528*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-33*x+560*x^4-528*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(528*t^4-32*t^3-32*t^2 - 32*t+1), {t,0,20}], t] (* or *)
    LinearRecurrence[{32, 32, 32, -528}, {1, 34, 1122, 37026, 1221297}, 20] (* G. C. Greubel, Dec 11 2016; simplified by Georg Fischer, Apr 08 2019 *)
    coxG[{4,528,-32}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 06 2018 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-33*x+560*x^4-528*x^5)) \\ G. C. Greubel, Dec 11 2016, modified Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-33*x+560*x^4-528*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^4 - 32*t^3 - 32*t^2 - 32*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 32*(a(n-1) + a(n-2) + a(n-3)) - 528*a(n-4).
G.f.: (1+x)*(1-x^4)/(1 - 33*x + 560*x^4 - 528*x^5). (End)