A163226 Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1, 43, 1806, 75852, 3184881, 133727076, 5614945203, 235760834988, 9899147615406, 415646320207041, 17452195907135052, 732784406294332791, 30768219023291805678, 1291898809163525952060, 54244365975641552431917
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..610
- Index entries for linear recurrences with constant coefficients, signature (41, 41, 41, -861).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-42*x+902*x^4-861*x^5) )); // G. C. Greubel, Apr 30 2019 -
Mathematica
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(861*t^4-41*t^3-41*t^2 - 41*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {41, 41, 41, -861}, {43,1806,75852,3184881}, 20]] (* G. C. Greubel, Dec 11 2016 *) coxG[{4, *61, -41}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
PARI
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(861*t^4-41*t^3 - 41*t^2-41*t+1)) \\ G. C. Greubel, Dec 11 2016
-
Sage
((1+x)*(1-x^4)/(1-42*x+902*x^4-861*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
Formula
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(861*t^4 - 41*t^3 - 41*t^2 - 41*t + 1).
a(n) = 41*a(n-1)+41*a(n-2)+41*a(n-3)-861*a(n-4). - Wesley Ivan Hurt, May 06 2021
Comments